scholarly journals Antioxidant activity of Lactobacillus plantarum NJAU-01 in an animal model of aging

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingfeng Ge ◽  
Bo Yang ◽  
Rui Liu ◽  
Donglei Jiang ◽  
Hai Yu ◽  
...  

Abstract Background Excessive reactive oxygen species (ROS) can cause serious damage to the human body and may cause various chronic diseases. Studies have found that lactic acid bacteria (LAB) have antioxidant and anti-aging effects, and are important resources for the development of microbial antioxidants. This paper was to explore the potential role of an antioxidant strain, Lactobacillus plantarum NJAU-01 screened from traditional dry-cured meat product Jinhua Ham in regulating D-galactose-induced subacute senescence of mice. A total of 48 specific pathogen free Kun Ming mice (SPF KM mice) were randomly allocated into 6 groups: control group with sterile saline injection, aging group with subcutaneously injection of D-galactose, treatments groups with injection of D-galactose and intragastric administration of 107, 108, and 109 CFU/mL L. plantarum NJAU-01, and positive control group with injection of D-galactose and intragastric administration of 1 mg/mL Vitamin C. Results The results showed that the treatment group of L. plantarum NJAU-01 at 109 CFU/mL showed higher total antioxidant capacity (T-AOC) and the antioxidant enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) than those of the other groups in serum, heart and liver. In contrast, the content of the oxidative stress marker malondialdehyde (MDA) showed lower levels than the other groups (P < 0.05). The antioxidant capacity was improved with the supplement of the increasing concentration of L. plantarum NJAU-01. Conclusions Thus, this study demonstrates that L. plantarum NJAU-01 can alleviate oxidative stress by increasing the activities of enzymes involved in oxidation resistance and decreasing level of lipid oxidation in mice.

2018 ◽  
Vol 69 (8) ◽  
pp. 2172-2176
Author(s):  
Catalin Victor Sfarti ◽  
Alin Ciobica ◽  
Carol Stanciu ◽  
Gheorghe G. Balan ◽  
Irina Garleanu ◽  
...  

Choledocholithiasis may cause biliary obstruction which leads to hepatocellular injury. Oxidative stress has been proposed as a possible mechanism involved in this disorder. This study evaluates the oxidative stress burden in patients with choledocholithiasis and secondary cholestasis, before and after endoscopic sphincterotomy. Experimental part: Patients diagnosed with choledocholithiasis and secondary extrahepatic cholestasis were included in the study between January 1st 2016 and October 31st 2016. In all patients oxidative stress markers were collected within 2 hours before and 48 hours after therapeutic ERCP. Selected markers were superoxide dismutase (SOD), glutathione peroxidase (GPX) and malondialdehyde (MDA). The results were compared to those from a group of 40 healthy subjects. Significantly lower concentrations of SOD (p = 0.03) and GPX (p [ 0.0001) activities, associated with an increased level of MDA level (p [ 0.0001) were shown in patients before biliary clearance compared with the healthy control group. After ERCP the only oxidative stress parameter which showed improvement was the SOD specific activity (p = 0.037). This study shows that extrahepatic cholestasis secondary to choledocholithiasis is associated with increased oxidative stress status. After biliary clearance one oxidative stress marker was significantly improved (SOD), suggesting a possible antioxidant effect of such procedure.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 435
Author(s):  
Reham Z. Hamza ◽  
Mohammad S. Al-Harbi ◽  
Munirah A. Al-Hazaa

Aging is a neurological disease that is afforded by incidence of oxidative stress. Chitosan has received global interests due to its wide medical uses. Quercetin (Q) is a bioflavonoid and widely distributed in vegetables and fruits. Resveratrol is considered as a potent antioxidant and is a component of a wide range of foods. The using of either chitosan nanopartciles (CH-NPs), querectin (Q), and resveratrol (RV) to reduce the oxidative stress and biochemical alterations on brain and testicular tissues induced by D-galactose (DG) (100 mg/Kg) were the aim of the present study. This study investigated the probable protective effects of CH-NPs in two doses (140,280 mg/Kg), Q (20 mg/Kg) and RV (20 mg/Kg), against DG induced aging and neurological alterations. Brain antioxidant capacity as malonaldehyde (MDA), catalase (CAT), and glutathione reductase (GRx), as well as histopathological damages of the brain and testicular tissues were measured. The DG treated group had significantly elevated the oxidative stress markers by 96% and 91.4% in brain and testicular tissues respectively and lower significantly the antioxidant enzyme activities of both brain and testicular tissues than those of the control group by 86.95%, 69.27%, 83.07%, and 69.43%. Groups of DG that treated with a combination of CH-NPs in two doses, Q and RV, the levels of oxidative stress marker declined significantly by 68.70%, 76.64% in brain tissues and by 74.07% and 76.61% in testicular tissues, and the enzymatic antioxidants increased significantly by 75.55%, 79.24%, 62.32%, and 61.97% as compared to the DG group. The present results indicate that CH-NPs, Q, and RV have protective effects against DG-induced brain and testis tissue damage at the biochemical and histopathological levels. Mechanisms of this protective effect of used compounds against neurological and testicular toxicity may be due to the enhanced brain and testis antioxidant capacities.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ovidiu-Dumitru Ilie ◽  
Emanuela Paduraru ◽  
Madalina-Andreea Robea ◽  
Ioana-Miruna Balmus ◽  
Roxana Jijie ◽  
...  

Background. As every organ within the body, the brain is also extremely susceptible to a plethora of noxious agents that change its chemistry. One component frequently found in current products against harmful species to crops is rotenone whose effect under prolonged exposure has been demonstrated to cause neurodegenerative disorders such as Parkinson’s disease. The latest reports have indeed revealed that rotenone promotes Parkinson’s in humans, but studies aiming to show congruent effects in zebrafish (Danio rerio) are lacking. Material and Methods. In this context, the aim of the present study was to demonstrate how chronic administration of rotenone for 3 weeks impairs the locomotor activity and sociability and induces oxidative stress in zebrafish. Results. There were no statistically significant differences following the analysis of their social interaction and locomotor tests ( p > 0.05 ). However, several exceptions have been noted in the control, rotenone, and probiotics groups when we compared their locomotor activity during the pretreatment and treatment interval ( p < 0.05 ). We further assessed the role of rotenone in disturbing the detoxifying system as represented by three enzymes known as superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Despite the fact that there were no statistically significant changes within SOD and GPx levels between the control group and rotenone, probiotics, and rotenone + probiotics ( p > 0.05 ), relevant changes have been observed between the analyzed groups ( p < 0.05 and p < 0.005 , respectively). On the other hand, significant differences ( p < 0.05 ) have been observed for MDA when we analyzed the data between the control group and the other three groups. Conclusions. Our results suggest that rotenone can be successfully used to trigger Parkinson’s disease-related symptomatology in zebrafish.


2021 ◽  
Author(s):  
Kültiğin ÇAVUŞOĞLU ◽  
Tuğçe Kalefetoğlu Macar ◽  
Oksal MACAR ◽  
Dilek ÇAVUŞOĞLU ◽  
Emine YALÇIN

Abstract Living organisms are increasingly exposed to ultraviolet (UV) rays of solar radiation, both due to the thinning of the ozone layer and the widespread uses in sterilization processes. The present study was conducted with the purpose of evaluating the damages of UV-A and UV-C radiations in Allium cepa L. roots. Three groups were formed from Allium bulbs, one of which was the control group. One of the other groups was exposed to 254 nm (UV-C) and the other to 365 nm (UV-A) UV. Growth retardation effect of UV was investigated with respect to germination percentage, total weight gain and root elongation, while genotoxicity arisen from UV exposure analyzed using mitotic index (MI) and chromosomal aberrations (CAs) including micronucleus (MN) frequency. Oxidative stress due to UV application was investigated based on the accumulation of malondialdehyde (MDA) and the total activities of superoxide dismutase (SOD) and catalase (CAT) enzymes. Also, meristematic integrity of the UV treated roots was controlled. UV treatments caused significant changes in all parameters compared to the control, but all effects were much more prominent in 254 nm UV-exposed group. This study clearly revealed that UV exposure triggered growth inhibition, genotoxicity, oxidative stress and meristematic cell damages in A. cepa roots depending on the wavelength.


Author(s):  
Mina Rasouli Mojez ◽  
Abbas Ali Gaeini ◽  
Siroos Choobineh ◽  
Mohsen Sheykhlouvand

Background: The present study determined whether 4 weeks of moderate aerobic exercise improves antioxidant capacity on the brain of rats against oxidative stress caused by radiofrequency electromagnetic radiation emitted from cell phones. Methods: Responses of malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase, as well as the number of hippocampal dead cells, were examined. Male Wistar rats (10–12 wk old) were randomly assigned to 1 of 4 groups (N = 8): (1) moderate aerobic exercise (EXE) (2 × 15–30 min at 1215 m/min speed with 5 min of active recovery between sets), (2) exposure to 900/1800 MHz radiofrequency electromagnetic waves 3 hours per day (RAD), (3) EXE + RAD, and (4) exposure to an experimental phone without battery. Results: Following the exposure, the number of the hippocampal dead cells was significantly higher in group RAD compared with groups EXE, EXE + RAD, and control group. Malondialdehyde concentration in group RAD was significantly higher than that of groups EXE, EXE + RAD, and control group. Also, the activity of catalase, glutathione peroxidase, and superoxide dismutase in groups EXE, EXE + RAD, and control group was significantly higher compared with those of the exposure group. Conclusion: This study demonstrated that moderate aerobic exercise enhances hippocampal antioxidant capacity against oxidative challenge in the form of radiofrequency electromagnetic waves.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Nour Elkhair Ali ◽  
Lamis AbdelGadir Kaddam ◽  
Suad Yousif Alkarib ◽  
Babikir Gabir Kaballo ◽  
Sami Ahmed Khalid ◽  
...  

Background. Oxidative processes might increase in patients with end-stage renal disease (ESRD) according to the current literature. Oxidative stress (OS) is a risk factor of atherosclerosis and cardiovascular complications, which are major causes of mortality among ESRD patients. Haemodialysis (HD) is life-saving procedure, nevertheless it is an active chronic inflammatory status that could augment cardiovascular disease and increase mortality. Gum Arabic (GA) has been claimed to act as an antioxidant and anti-inflammatory agent in experimental studies and clinical trials. Therefore, we assumed GA supplementation among haemodialysis patients would reduce oxidative stress and consequently reduce the state of chronic inflammatory activation associated with haemodialysis. Methods. Forty end-stage renal failure (ESRF) patients aged 18–80 years who were on regular haemodialysis in Arif Renal Center, Omdurman, Sudan, were recruited. All recruited patients met the inclusion criteria and signed informed consent prior to enrolment. The patients received 30 g/day of GA for 12 weeks. C-reactive protein (CRP) and complete blood count (CBC) were measured as baseline and monthly. Total antioxidant capacity (TAC) and oxidative stress marker malondialdehyde (MDA) levels were measured before and after GA intake. Ethical approval from the National Medicines and Poisons Board was obtained. Results. Gum Arabic significantly augmented total antioxidant capacity level (P<0.001) (95% CI, 0.408–0.625) and also attenuated oxidative marker MDA and C-reactive protein (P<0.001). Conclusions. GA has revealed potent antioxidative and anti-inflammatory properties in haemodialysis patients. Oral digestion of GA (30 g/day) decreased oxidative stress and inflammatory markers among haemodialysis patients. Trial registration. ClinicalTrials.gov Identifier: NCT03214692, registered 11 July 2017 (prospective registration).


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ana Petelin ◽  
Saša Kenig ◽  
Rok Kopinč ◽  
Matjaž Deželak ◽  
Maša Černelič Bizjak ◽  
...  

Objectives. Obesity and overweight are chronic disorders of multifactorial origin that are characterized by high oxidative status and by chronic activation of macrophages in peripheral tissues. Effective therapeutic approaches to lower inflammation and oxidative stress are currently of general interest. Royal jelly (RJ) is a functional food with a broad range of pharmacological activities, mainly used by healthy individuals or borderline patients to protect themselves against disease onset. The objective of this randomized, double-blind, placebo-controlled trial was to investigate the effects of RJ supplementation on metabolic profile and oxidative and inflammatory parameters in asymptomatic overweight adults, considered at an early stage of developing metabolic syndrome. Material and Methods. The experimental group (n=30) was given RJ and the control group (n=30) was provided with a placebo for eight weeks. Anthropometric, biochemical parameters, biomarkers of oxidative stress, and inflammation were assessed at baseline, after 4 and 8 weeks of the intervention, and after additional 2 weeks of follow up. Results and Conclusion. Compared with the placebo, RJ supplementation demonstrated a statistically significant decrease in total cholesterol (6.7%; p=0.041) and inflammatory marker C-reactive protein (19%; p=0.027), whereas significant increases were observed in anti-inflammatory marker adiponectin (34%; p=0.011), endogenous antioxidants bilirubin (35%; p=0.002) and uric acid (5%; p=0.018), total antioxidant capacity in serum (54%; p=0.005), and leptin (17%; p=0.025). The present study demonstrated positive effects of RJ administration on lipid profile, satiety, inflammation, and antioxidant capacity in overweight adults. Therefore, our study supports the benefits of RJ supplementation for the improvement of human health.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Fatemeh Zovari ◽  
Hadi Parsian ◽  
Ali Bijani ◽  
Ameneh Moslemnezhad ◽  
Atena Shirzad

Objective. In menopause, reduction of estrogen hormone affects oxidative stress process in serum. Oxidative stress in saliva plays a significant role in the pathogenesis of oral diseases. The aim of this study was to investigate the total antioxidant capacity and lipid peroxidation in the serum and saliva of premenopausal and postmenopausal women. Methods. In this case control study, 50 postmenopausal women (case group) and 48 premenopausal women (control group) were selected. The unstimulated whole saliva and serum of the postmenopausal and premenopausal women were collected. The total antioxidant capacity (TAC) of the saliva and serum was measured by ferric reducing antioxidant power (FRAP). Also, malondialdehyde (MDA) was measured by thiobarbituric acid reactive substance (TBARS) method for serum and saliva. Then, the obtained data were analyzed by SPSS 17, whereby Mann–Whitney test and Spearman’s correlation test were used. P < 0.05 was considered statistically significant. Results. The postmenopausal group had significantly lower mean serum TAC and higher mean serum MDA than the control group ( P < 0 < 001 and P < 0.01 , respectively). The mean salivary TAC and MDA, however, did not differ significantly between the case and control group ( P = 0.64 and P = 0.08 , respectively). Conclusion. In postmenopausal women, with elevation of serum MDA and reduction of serum TAC, the extent of serum oxidative stress grows, but MDA and TAC levels of saliva do not change.


Kardiologiia ◽  
2020 ◽  
Vol 60 (5) ◽  
pp. 57-61
Author(s):  
A. K. Tikhaze ◽  
V. Ya. Kosach ◽  
V. Z. Lankin ◽  
A. A. Panferova ◽  
M. D. Smirnova

Aim To study the oxidative modification of red blood cell Cu,Zn superoxide dismutase (SOD) in patients with ischemic heart disease (IHD) in vivo and in vitro to substantiate the use of a new oxidative stress marker.Material and methods Red blood cell Cu,Zn SOD was measured by depression of nitrotetrazolium blue reduction by the superoxide anion generated in xanthine oxidase xanthine oxidation. Red blood cell Cu,Zn SOD was measured immunochemically. The biochemical study was performed in the control group (patients with low extremity fracture without known history of cardiovascular diseases and hyperlipidemia) and in groups of patients with acute myocardial infarction, stable angina, and decompensated heart failure. For evaluation of oxidative stress intensity in IHD patients, an empirical SOD oxidative modification coefficient (OMCSOD) was proposed, which is a Cu,Zn SOD activity / Cu,Zn SOD content ratio.Results The red blood cell Cu,Zn SOD activity was significantly decreased in all IHD groups compared to the control group. Furthermore, OMCSOD was also considerably decreased in IHD patients, which warrants the use of this biochemical index as an oxidative stress marker.Conclusion It was shown that the Cu,Zn SOD modification was induced by interaction of the enzyme molecules with a natural dicarbonyl, malonic dialdehyde, and OMCSOD can be used for evaluation of oxidative stress intensity in IHD patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Somayeh Bahrami ◽  
Ali Shahriari ◽  
Mehdi Tavalla ◽  
Somayeh Azadmanesh ◽  
Hossein Hamidinejat

Toxoplasmosis is a common parasitic infection in the world. Since increased free radicals and oxidative stress are reported in many parasitic diseases the purpose of the present study was to evaluate the oxidative stress in acute and chronic toxoplasmosis. RH strains ofToxoplasmatachyzoites were used in the present study. Twenty-five female rats were infected with the parasite while 25 other rats were as the control group that received normal saline. Zero-, 5-, 7-, 10-, and 45-day postinfection (DPI) blood samples were taken. Some parameters related to oxidant and antioxidants such as antioxidant enzymes, malondialdehyde, and total antioxidant capacity were measured. On day 7 after infection, GPX activity and GSH level were significantly increased and in the mentioned day the amount of total antioxidant capacity was significantly reduced. In other cases, there were no significant differences between the groups in different days. Overall, based on the results it seems that, on day 7 after infection, in infected rats responses to oxidative stress were triggered and led to decrease of total antioxidant capacity. Furthermore, glutathione was increased to cope with stress. It seems that probably antioxidant defense system entered the infection to the chronic phase and changed the parasites stage.


Sign in / Sign up

Export Citation Format

Share Document