scholarly journals Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia stricta var. Dilenii’s Fruits: Optimization and Biological Activities

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1786
Author(s):  
Iván Gómez-López ◽  
Gloria Lobo-Rodrigo ◽  
María P. Portillo ◽  
M. Pilar Cano

Opuntia stricta var. Dillenii’s prickly pears are an underutilized fruit with a high content of betalains and phenolic compounds that could bring potential health benefits for humans. The aim of this study is the optimization of the “green” extraction of betalains and phenolic compounds from Opuntia stricta var. Dillenii’s whole fruits by ultrasound-assisted extraction (UAE), using a response surface methodology (RSM) by a central composite design (CCD) in order to obtain extracts rich in betalains and phenolic compounds with proven biological activities. For UAE optimization, the extraction temperature (20–50 °C), the amplitude (20–50%) and the ethanol volume in extraction solvent (15–80%, v/v) were selected as independent variables. All combinations were conducted at 2, 5, 10, 20 and 30 min to determinate the time effect. The betalain and phenolic compound content in Opuntia stricta var. Dillenii’s whole fruits and UAE extracts were identified by HPLC-DAD-ESI/MS and HPLC-DAD-MS/QTOF and the antioxidant (ORAC method) and the anti-inflammatory (hyaluronidase inhibition method) in vitro biological activities also were determined. The most efficient extraction time was 5 min and the best UAE parameter combination was 50% amplitude, 15% ethanol in solvent (ethanol/water, 15/85, v/v) and 20 °C temperature, obtaining 10.06 ± 0.10 mg of total major betalains/g dry weight, 2.32 ± 0.08 mg of piscidic acid/g dry weight and 0.38 ± 0.00 mg of total major flavonoids/g dry weight. All applied UAE combinations significantly improved the in vitro bioactive activities (antioxidant and anti-inflammatory) of the Opuntia stricta var. Dillenii’s extracts compared to the bioactivities of the extracts obtained by standard homogenization processes.

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1683
Author(s):  
Ilaria Pappalardo ◽  
Anna Santarsiero ◽  
Maria De Luca ◽  
Maria Assunta Acquavia ◽  
Simona Todisco ◽  
...  

The peppers of the Capsicum species are exploited in many fields, as flavoring agents in food industry, or as decorative and therapeutic plants. Peppers show a diversified phytochemical content responsible for different biological activities. Synergic activity exerted by high levels of antioxidant compounds is responsible for their important anti-inflammatory property. A methanolic extract was obtained from a new pepper genotype and tested for anti-inflammatory activity. The extract was incorporated into phospholipid vesicles to increase the bioavailability of its bioactive components. Two types of phospholipid vesicles were produced, conventional liposomes and Penetration Enhancer containing Vesicles (PEVs). They were tested in human monoblastic leukemia U937 cell line, showing no cytotoxic effect. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were measured to value the in vitro efficacy of the vesicles in regulating inflammatory responses. Liposomal incorporation significantly reduced ROS levels in extract-treated LPS-activated cells. Furthermore, LC-MS/MS analyses demonstrated that liposomes facilitated the transport of the extract components across the cell membrane and their accumulation into the cytoplasm.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 267
Author(s):  
Fátima Lameirão ◽  
Diana Pinto ◽  
Elsa F. Vieira ◽  
Andreia F. Peixoto ◽  
Cristina Freire ◽  
...  

Chestnut processing industry generates large amounts of by-products, including leaves, burs and shells that are a source of bioactive compounds. The purpose of this study was to establish an ultrasound-assisted extraction (UAE) of phenolic and antioxidant compounds from industrial chestnut shells. A central composite design (CCD) was conducted to analyze the effects of time (4–46 min) and temperature (34–76 °C) in the antioxidant activity (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP)) and total phenolic compounds (TPC) of chestnut shells extracts. The optimal extraction conditions were obtained at 70 °C for 40 min. The optimal extract was characterized regarding phenolic profile, radical scavenging capacity, and effects on intestinal and dermal cell lines. The optimal extract revealed high amounts of ellagic acid (40.4 µg/mg dw), followed by caffeic acid derivative (15.4 µg/mg dw) and epigallocatechin (15.3 µg/mg dw). Indeed, the extract exhibited the highest scavenging efficiencies against NO● (IC50 = 0.1 µg/mL) and HOCl (IC50 = 0.7 µg/mL) and did not conducted to a decrease on HaCaT and HFF-1 viability up to 100 μg/mL. Oppositely, a decrease on Caco-2 and HT29-MTX viability was observed. This study suggests that UAE could be a sustainable option to valorize chestnut shells as raw material for different industries.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 286 ◽  
Author(s):  
Antonio Serrano ◽  
Gaspar Ros ◽  
Gema Nieto

Nowadays, more consumers demand healthier products. A way to offer such products is to functionalize them using health-promoting bioactive compounds. Meat and meat products are high in essential nutrients; however, their excessive consumption implies a high intake of other substances that, at levels above recommended uptake limits, have been linked to certain non-communicable chronic diseases. An effective way to reduce this danger is to reformulate meat products. In this study, natural botanical extracts rich in anti-inflammatory and antioxidant compounds were used to improve the health properties of a cooked ham with an optimal nutritional profile (i.e., low in fat and salt). The RAW 264.7 mouse cell line was used as an inflammatory model and was stimulated with Escherichia coli lipopolysaccharide to evaluate changes in inflammatory biomarkers such as tumour necrosis factor alpha, the interleukins (ILs) IL-1β and IL-6, nitric oxide and intracellular reactive oxygen species (ROS). The results showed that the use of natural extracts in optimized cooked ham significantly downregulated inflammatory markers and reduced the levels of intracellular ROS. Thus, the present study proposed a new functional cooked ham with potential health properties via anti-inflammatory and antioxidant in vitro activity.


2019 ◽  
Vol 4 (2) ◽  

There is a worldwide demand for phenolic compounds (PC) because they exhibit several biological activities. This work aimed at extracting phenolic compounds from peanut meal. The methods of extraction were mainly: conventional solvent extraction (traditional methods) and ultrasound assisted extraction (recent methods) and comparing their results. Peanut meal (PM) was prepared by defatting with n-hexane, and then extracted by the two previous methods. First, the conventional solvents used were 80% methanol, ethanol, acetone, isopropanol, and distilled water. Then studied Different parameters such as meal: water ratio, also the effect of temperature and the pH on the extraction process. Second, ultrasonic assisted extractions (USAE), the parameters investigated were temperature, time and speed of sonication. Finally, all the extracts were analyzed by HPLC for their phenolic contents. Results indicated that the highest extracted PC achieved by solvents was in distilled water where 1:100, Meal: Water ratio which extracted 40 mg PC / g PM at 30& 35°C. Highest extracted PC was achieved by alkaline medium at pH 12 more than acidic and neutral medium. While (USAE) at speed 8 ultrasonication and temperature 30ᵒC, extracted 49.2mg PC /g PM. Sothe ultrasound assisted extraction exhibited great influence on the extraction of phenolic compounds from peanut meal. The ultrasonic peanut extract was examined for its antioxidant, antimicrobial and anticarcinogenic activities. The antioxidant activity of PM phenolic extract prepared by ultrasonic technique, was measured by, β-carotene, and DPPH methods, and reducing antioxidant power. Results revealed values: 84.57, 57.72 and 5960 respectively. The PM extract showed different levels of antimicrobial activity against the pathogenic bacteria used. As for the anticarcinogenic effect PM phenolic extract most effective on inhibiting colon carcinoma and lung carcinoma cell lines with IC50 = 20.7 and 20.8 µ/ml., respectively. This was followed by intestinal carcinoma and liver carcinoma cell lines with IC50= 39.6 and 40.2µ/ml.


2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


Separations ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 57
Author(s):  
Rokayya Sami ◽  
Abeer Elhakem ◽  
Mona Alharbi ◽  
Manal Almatrafi ◽  
Nada Benajiba ◽  
...  

Onions contain high antioxidants compounds that fight inflammation against many diseases. The purpose was to investigate some selected bioactive activities of onion varieties (Yellow, Red, Green, Leek, and Baby). Antioxidant assays and anti-inflammatory activities such as NO production with the addition of some bioactive components were determined and analyzed by using a spectrophotometer. Gas chromatography and mass spectrometry (GC–MS) was used for the volatile compounds, while an Atomic absorption spectrometer was used for mineral determinations. Red variety achieved the highest antioxidant activities. The total flavonoids were between (12.56 and 353.53 mg Quercetin/gin dry weight) (dw) and the total phenol was (8.75–25.73 mg/g dw). Leek, Yellow and Green extracts achieved highly anti-inflammatory values (3.71–4.01 μg/mL) followed by Red and Baby extracts, respectively. The highest contents of sodium, potassium, zinc, and calcium were established for Red onions. Furfuraldehyde, 5-Methyl-2-furfuraldehyde, 2-Methyl-2-pentenal, and 1-Propanethiol were the most predominant, followed by a minor abundance of the other compounds such as Dimethyl sulfide, Methyl allyl disulfide, Methyl-trans-propenyl-disulfide, and Methyl propyl disulfide. The results recommend that these varieties could act as sources of essential antioxidants and anti-inflammatories to decrease inflammation and oxidative stresses, especially red onions that recorded high activities.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3303
Author(s):  
Amina M. G. Zedan ◽  
Mohamed I. Sakran ◽  
Omar Bahattab ◽  
Yousef M. Hawsawi ◽  
Osama Al-Amer ◽  
...  

The use of insects as a feasible and useful natural product resource is a novel and promising option in alternative medicine. Several components from insects and their larvae have been found to inhibit molecular pathways in different stages of cancer. This study aimed to analyze the effect of aqueous and alcoholic extracts of Vespa orientalis larvae on breast cancer MCF7 cells and investigate the underlying mechanisms. Our results showed that individual treatment with 5% aqueous or alcoholic larval extract inhibited MCF7 proliferation but had no cytotoxic effect on normal Vero cells. The anticancer effect was mediated through (1) induction of apoptosis, as indicated by increased expression of apoptotic genes (Bax, caspase3, and p53) and decreased expression of the anti-apoptotic gene Bcl2; (2) suppression of intracellular reactive oxygen species; (3) elevation of antioxidant enzymes (CAT, SOD, and GPx) and upregulation of the antioxidant regulator Nrf2 and its downstream target HO-1; (4) inhibition of migration as revealed by in vitro wound healing assay and downregulation of the migration-related gene MMP9 and upregulation of the anti-migratory gene TIMP1; and (5) downregulation of inflammation-related genes (NFκB and IL8). The aqueous extract exhibited the best anticancer effect with higher antioxidant activities but lower anti-inflammatory properties than the alcoholic extract. HPLC analysis revealed the presence of several flavonoids and phenolic compounds with highest concentrations for resveratrol and naringenin in aqueous extract and rosmarinic acid in alcoholic extract. This is the first report to explain the intracellular pathway by which flavonoids and phenolic compounds-rich extracts of Vespa orientalis larvae could induce MCF7 cell viability loss through the initiation of apoptosis, activation of antioxidants, and inhibition of migration and inflammation. Therefore, these extracts could be used as adjuvants for anticancer drugs and as antioxidant and anti-inflammatory agents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Melanie S. Matos ◽  
José D. Anastácio ◽  
Cláudia Nunes dos Santos

Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1593
Author(s):  
Iván Gómez-López ◽  
Gloria Lobo-Rodrigo ◽  
María P. Portillo ◽  
M. Pilar Cano

The aim of the present study was the full characterization, quantification, and determination of the digestive stability and bioaccessibility of individual betalain and phenolic compounds of Opuntia stricta, var. Dillenii fresh fruits (peel, pulp, and whole fruit) and of the products of the industrialization to obtain jam (raw pressed juice (product used for jam formulation), by-product (bagasse), and frozen whole fruit (starting material for jam production)). Opuntia stricta var. Dillenii fruits and products profile showed 60 betalain and phenolic compounds that were identified and quantified by HPLC-DAD-ESI/MS and HPLC-DAD-MS/QTOF, being 25 phenolic acids (including isomers and derivatives), 12 flavonoids (including glycosides), 3 ellagic acids (including glycosides and derivative), and 20 betanins (including degradation compounds). In vitro gastrointestinal digestion was performed by INFOGEST® protocol. Fruit pulp showed the greater content of total betalains (444.77 mg/100 g f.w.), and jam only showed very low amounts of two betanin degradation compounds, Cyclo-dopa-5-O-β-glucoside (and its isomer) (0.63 mg/100 f.w.), and two Phyllocactin derivatives (1.04 mg/100 g f.w.). Meanwhile, fruit peel was the richer tissue in total phenolic acids (273.42 mg/100 g f.w.), mainly in piscidic acid content and total flavonoids (7.39 mg/100 g f.w.), isorhamnetin glucoxyl-rhamnosyl-pentoside (IG2) being the most abundant of these compounds. The stability of betalains and phenolic compounds during in vitro gastrointestinal digestion is reported in the present study. In Opuntia stricta var. Dillenii pulp (the edible fraction of the fresh fruit), the betanin bioaccessibility was only 22.9%, and the flavonoid bioaccessibility ranged from 53.7% to 30.6%, depending on the compound. In non-edible samples, such as peel sample (PE), the betanin bioaccessibility was 42.5% and the greater bioaccessibility in flavonoids was observed for quercetin glycoside (QG1) 53.7%, the fruit peel being the most interesting material to obtain antioxidant extracts, attending to its composition on antioxidant compounds and their bioaccessibilities.


2017 ◽  
Vol 313 (4) ◽  
pp. L710-L721 ◽  
Author(s):  
Yunbo Ke ◽  
Olga V. Oskolkova ◽  
Nicolene Sarich ◽  
Yufeng Tian ◽  
Albert Sitikov ◽  
...  

Prostaglandins (PG), the products of cyclooxygenase-mediated conversion of arachidonic acid, become upregulated in many situations including allergic response, inflammation, and injury, and exhibit a variety of biological activities. Previous studies described barrier-enhancing and anti-inflammatory effects of PGE2 and PGI2 on vascular endothelial cells (EC). Yet, the effects of other PG members on EC barrier and inflammatory activation have not been systematically analyzed. This study compared effects of PGE2, PGI2, PGF2α, PGA2, PGJ2, and PGD2 on human pulmonary EC. EC permeability was assessed by measurements of transendothelial electrical resistance and cell monolayer permeability for FITC-labeled tracer. Anti-inflammatory effects of PGs were evaluated by analysis of expression of adhesion molecule ICAM1 and secretion of soluble ICAM1 and cytokines by EC. PGE2, PGI2, and PGA2 exhibited the most potent barrier-enhancing effects and most efficient attenuation of thrombin-induced EC permeability and contractile response, whereas PGI2 effectively suppressed thrombin-induced permeability but was less efficient in the attenuation of prolonged EC hyperpermeability caused by interleukin-6 or bacterial wall lipopolysaccharide, LPS. PGD2 showed a modest protective effect on the EC inflammatory response, whereas PGF2α and PGJ2 were without effect on agonist-induced EC barrier dysfunction. In vivo, PGE2, PGI2, and PGA2 attenuated LPS-induced lung inflammation, whereas PGF2α and PGJ2 were without effect. Interestingly, PGD2 exhibited a protective effect in the in vivo model of LPS-induced lung injury. This study provides a comprehensive analysis of barrier-protective and anti-inflammatory effects of different prostaglandins on lung EC in vitro and in vivo and identifies PGE2, PGI2, and PGA2 as prostaglandins with the most potent protective properties.


Sign in / Sign up

Export Citation Format

Share Document