scholarly journals Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA)

Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1020 ◽  
Author(s):  
Isabel Hinarejos ◽  
Candela Machuca ◽  
Paula Sancho ◽  
Carmen Espinós

The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.

2019 ◽  
Vol 12 (2) ◽  
pp. 93 ◽  
Author(s):  
Shashank Masaldan ◽  
Abdel Ali Belaidi ◽  
Scott Ayton ◽  
Ashley I. Bush

Iron dyshomeostasis is a feature of Alzheimer’s disease (AD). The impact of iron on AD is attributed to its interactions with the central proteins of AD pathology (amyloid precursor protein and tau) and/or through the iron-mediated generation of prooxidant molecules (e.g., hydroxyl radicals). However, the source of iron accumulation in pathologically relevant regions of the brain and its contribution to AD remains unclear. One likely contributor to iron accumulation is the age-associated increase in tissue-resident senescent cells that drive inflammation and contribute to various pathologies associated with advanced age. Iron accumulation predisposes ageing tissue to oxidative stress that can lead to cellular dysfunction and to iron-dependent cell death modalities (e.g., ferroptosis). Further, elevated brain iron is associated with the progression of AD and cognitive decline. Elevated brain iron presents a feature of AD that may be modified pharmacologically to mitigate the effects of age/senescence-associated iron dyshomeostasis and improve disease outcome.


Author(s):  
Afzal Misrani ◽  
Sidra Tabassum ◽  
Li Yang

Mitochondria play a pivotal role in bioenergetics and respiratory functions, which are essential for the numerous biochemical processes underpinning cell viability. Mitochondrial morphology changes rapidly in response to external insults and changes in metabolic status via fission and fusion processes (so-called mitochondrial dynamics) that maintain mitochondrial quality and homeostasis. Damaged mitochondria are removed by a process known as mitophagy, which involves their degradation by a specific autophagosomal pathway. Over the last few years, remarkable efforts have been made to investigate the impact on the pathogenesis of Alzheimer’s disease (AD) of various forms of mitochondrial dysfunction, such as excessive reactive oxygen species (ROS) production, mitochondrial Ca2+ dyshomeostasis, loss of ATP, and defects in mitochondrial dynamics and transport, and mitophagy. Recent research suggests that restoration of mitochondrial function by physical exercise, an antioxidant diet, or therapeutic approaches can delay the onset and slow the progression of AD. In this review, we focus on recent progress that highlights the crucial role of alterations in mitochondrial function and oxidative stress in the pathogenesis of AD, emphasizing a framework of existing and potential therapeutic approaches.


2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Michael L.-H. Huang ◽  
Shannon Chiang ◽  
Danuta S. Kalinowski ◽  
Dong-Hun Bae ◽  
Sumit Sahni ◽  
...  

The mitochondrion is an essential organelle important for the generation of ATP for cellular function. This is especially critical for cells with high energy demands, such as neurons for signal transmission and cardiomyocytes for the continuous mechanical work of the heart. However, deleterious reactive oxygen species are generated as a result of mitochondrial electron transport, requiring a rigorous activation of antioxidative defense in order to maintain homeostatic mitochondrial function. Indeed, recent studies have demonstrated that the dysregulation of antioxidant response leads to mitochondrial dysfunction in human degenerative diseases affecting the nervous system and the heart. In this review, we outline and discuss the mitochondrial and oxidative stress factors causing degenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Friedreich’s ataxia. In particular, the pathological involvement of mitochondrial dysfunction in relation to oxidative stress, energy metabolism, mitochondrial dynamics, and cell death will be explored. Understanding the pathology and the development of these diseases has highlighted novel regulators in the homeostatic maintenance of mitochondria. Importantly, this offers potential therapeutic targets in the development of future treatments for these degenerative diseases.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yoshihiro Uchikado ◽  
Yoshiyuki Ikeda ◽  
Yuichi Sasaki ◽  
Yuichi Akasaki ◽  
Mitsuru Ohishi

Introduction: Metabolic stress including oxidized low density lipoprotein (ox-LDL) cause mitochondrial dysfunction and evoke vascular senescence and atherosclerosis. Mitochondria are highly dynamic organelles that undergo quality control by mitochondrial dynamics and mitophagy. This study aims to clarify whether and how mitochondrial dynamics and mitophagy are involved in the etiology of vascular senescence and arteriosclerosis. Methods: VSMC were stimulated by ox-LDL. We also conducted in vivo experiment using C57BL6 (WT), apolipoprotein E (ApoE) deficient and the double knockout of ApoE mice and Angiotensin II Type1 Receptor (AT1R). Results: Treatment of ox-LDL forced mitochondria to fission through activation of Drp1, induced mitochondrial dysfunction and oxidative stress, and developed cellular senescence. Inhibition of either Drp1, AT1R, MAPK retarded them, suggesting that mitochondrial fission plays key roles to develop premature cellular senescence and is modulated by AT1R/MAPK signal.Administration of ox-LDL decreased the number of mitophagy assessed by electron microscopy and immunohistochemistry of LAMP2 and TOMM20. AT1R signal inhibition increased mitophagy which was not affected by Atg7 knockdown, whereas it was decreased by either Rab9 or Ulk1 knockdown. Immunohistochemistry showed Rab9 dots were co-localized to TOMM20 and LAMP2, whereas LC3 dots were not, suggesting that AT1R signal induces mitophagy through Rab9-dependent alternative autophagy. The degree of vascular senescence was higher, the number of fused mitochondria and mitochondrial function were lower and mitochondrial oxidative stress was higher in ApoE KO than those in WT. DKO attenuated these adverse effect of ApoE KO. Conclusion: AT1R regulates vascular senescence and arteriosclerosis via induction of mitochondrial fission and inhibition of mitophagy.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Xu

Abstract Abstract text Reciprocal translocations (RecT) and Robertsonian translocations (RobT) are among the most common chromosomal abnormalities that cause infertility and birth defects. In 2017, the Reproductive Medicine Center of the first affiliated Hospital of Zhengzhou University reported a method named "Mapping Allele with Resolved Carrier Status" (MaReCs), which enables chromosomal ploidy screening and resolution of the translocation carrier status of the same embryo. Meanwhile, the first international healthy baby, where the chromosomal balanced translocation that can be transmitted to offspring was precisely blocked by ''MaReCS, was born in our center''. Roche translocation can also delivery healthy babies. Therefore, MaReCs accurately enables the selection of translocation-free embryos from patients carrying chromosomal translocations.In addition, with regard to the monogenic disorders and relative cases, our center used Karyomapping-SNP and NGS technology for preimplantation genetic diagnosis, completed the first Huntington's disease patient in China and delivered a healthy embryos. NGS/Karyomapping PGD can be used to assist pregnancy for all genetic diseases with clear genetic patterns and pathogenic genes. Trial registration number: Study funding: Funding source:


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 943-943
Author(s):  
Michael Minkley ◽  
Nancy Sweeters ◽  
Shiva Kasravi ◽  
Jennifer Ferguson ◽  
Annie Higa ◽  
...  

Abstract Background: Neurodegeneration with Brain Iron Accumulation (NBIA) is a group of rare genetic disorders characterized by progressive degenerative motor symptoms and the accumulation of iron in the basal ganglia. Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a form of NBIA caused by a mutation in the PANK2 gene leading to a deficiency in pantothenate kinase. Phospholipase A2G6-Associated Neurodegeneration (PLAN) is caused by a mutation in the PLA2G6 gene resulting in impaired phospholipase activity. Current understanding of systemic changes in NBIA disorders is limited, leaving no clear diagnostic biomarkers. Monitoring the systemic changes could identify candidate biomarkers for assessing disease severity and evaluating the efficacy of new therapies. Previous studies of Parkinson's disease (PD) have found a systemic burden of increased oxidative stress and chronic inflammation accompanies the neurological symptoms of the disease. Similarly, abnormal systemic iron regulation associated with brain iron accumulation as well as damage associated with neuromuscular degeneration could lead to increased oxidative stress and a state of chronic inflammation in NBIA. Our initial investigation of a patient with PLAN1, revealed elevated levels of systemic oxidative stress. We investigated a group of PKAN patients as well as continued our investigation of a patient with PLAN to evaluate the possibility of abnormal iron trafficking, increased oxidative stress and chronic inflammation in NBIA. Our aim was to expand our investigation of circulating levels of inflammatory cytokines, oxidative stress markers and iron regulatory and metabolic proteins in NBIA patients to include a group of patients with PKAN. Methods: Plasma samples from 15 PKAN patients were collected at the UCSF Benioff Children's Hospital in Oakland, California. Similarly, a plasma sample from a patient with PLAN was collected in Campbell River, British Columbia. Plasma samples from a matched group of 15 healthy controls were also collected at the University of Victoria. All patients provided informed consent to the study. The pro-inflammatory cytokines IL-6 and TNFα as well as the anti-inflammatory cytokine IL-10 were measured by ELISA. Total levels of the lipid peroxidation product malondialdehyde (MDA) were measured using N-Methyl-Phenyl-Indole (NMPI). Free, acutely generated, MDA not bound to proteins, was measured by removing plasma proteins via a 10KD spin filtration then measuring the MDA content of resulting filtrate using NMPI. Results: The levels of MDA and Free MDA were significantly elevated in PKAN patients at baseline in comparison to controls (p = 0.05, p = 0.03). IL-6 and TNFα were slightly, but not significantly elevated at baseline compared to controls. We previously demonstrated, similar elevations of oxidative stress in our case study of an NBIA patient with PLAN1. Additionally, all three inflammatory cytokines measured for this study expansion in PLAN were higher than average levels observed in the PKAN and control groups (S ee Table 1). Further analysis of systemic biomarkers in NBIA including proteomic analysis of 30 systemic blood proteins, including iron trafficking proteins is ongoing. Conclusions: We expand previous findings of elevated levels of systemic oxidative stress in other neurodegenerative diseases such as PD to include NBIA patients with PKAN and PLAN. We provide novel evidence of elevated levels of Free MDA; representative of an acute oxidative stress burden in NBIA in addition to the previously noted elevation in total MDA levels. We provide preliminary signs that of an accompanying inflammatory burden in NBIA, but a larger sample group may be needed to determine its significance. References M. Minkley, A. Jackson, D. Smith, C. Borchers, E. Vichinsky, R. Nashmi, P.B. Walter and P. M. Macloed. (2017). Neurodegeneration with Brain Iron Accumulation: PLA2G6-Associated Dystonia-Parkinsonism: Clinical and Animal Studies. Presented at the 2017 European Human Genetics Conference, Copenhagen, Denmark . Disclosures Minkley: Apopharma: Research Funding. Neumayr: Apopharma: Research Funding. Walter: Apopharma: Research Funding.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 918
Author(s):  
Heng-Chung Kung ◽  
Kai-Jung Lin ◽  
Chia-Te Kung ◽  
Tsu-Kung Lin

Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yan-Feng Huang ◽  
Lu Lu ◽  
Da-Jian Zhu ◽  
Ming Wang ◽  
Yi Yin ◽  
...  

This paper studied the chronic fatigue induced by excessive exercise and the restoration effects ofAstragaluspolysaccharides (APS) on mitochondria. In vivo, we found that excessive exercise could cause oxidative stress statue which led to morphological and functional changes of mitochondria. The changes, including imbalance between mitochondria fusion-fission processes, activation of mitophagy, and decrease of PGC-1αexpression, could be restored by APS. We further confirmed in vitro, and what is more, we found that APS may ameliorate mitochondrial dysfunction through Sirt1 pathway. Based on the results, we may figure out part of the molecular mechanism of mitochondrial amelioration by APS.


Sign in / Sign up

Export Citation Format

Share Document