scholarly journals Seismic Behavior of Triple Tunnel Complex in Soft Soil Subjected to Transverse Shaking

2020 ◽  
Vol 10 (1) ◽  
pp. 334
Author(s):  
Ahsan Naseem ◽  
Muhammad Kashif ◽  
Nouman Iqbal ◽  
Ken Schotte ◽  
Hans De Backer

Combining multiple tunnels into a single tunnel complex while keeping the surrounding area compact is a complicated procedure. The condition becomes more complex when soft soil is present and the area is prone to seismic activity. Seismic vibrations produce sudden ground shaking, which causes a sharp decrease in the shear strength and bearing capacity of the soil. This results in larger ground displacements and deformation of structures located at the surface and within the soil mass. The deformations are more pronounced at shallower depths and near the ground surface. Tunnels located in that area are also affected and can undergo excessive distortions and uplift. The condition becomes worse if the tunnel area is larger, and, thus, the respective tunnel complex needs to be properly evaluated. In this research, a novel triple tunnel complex formed by combining three closely spaced tunnels is numerically analyzed using Plaxis 2D software under variable dynamic loadings. The effect of variations in lining thickness, the inner supporting structure, embedment depth on the produced ground displacements, tunnel deformations, resisting bending moments, and the developed thrusts are studied in detail. The triple tunnel complex is also compared with the rectangular and equivalent horizontal twin tunnel complexes in terms of generated thrusts and resisted seismic-induced bending moments. From the results, it is concluded that increased thickness of the lining, inner structure, and greater embedment depth results in decreased ground displacements, tunnel deformations, and increased resistance to seismic-induced bending moments. The comparison of shapes revealed that the triple tunnel complex has better resistance against moments with the least amount of thrust and surface heave produced.

1994 ◽  
Vol 31 (4) ◽  
pp. 513-520 ◽  
Author(s):  
V.V.R.N. Sastry ◽  
G.G. Meyerhof

The lateral soil pressures, bending moments, pile displacements at ground surface, and bearing capacity of instrumented vertical single flexible model piles in layered sands consisting of loose sand overlying compact sand under vertical eccentric and central inclined loads have been investigated. The results of these load tests are compared with theoretical estimates based on the concept of an effective embedment depth of equivalent rigid piles. Reasonable agreement has been found between the observed and predicted behaviour of flexible piles. The analyses are also compared with the results of some field case records. Key words : bearing capacity, instrumentation, model test, layered soil, pile, sand.


1990 ◽  
Vol 27 (1) ◽  
pp. 19-28 ◽  
Author(s):  
V. V. R. N. Sastry ◽  
G. G. Meyerhof

The lateral soil pressures, bending moments, pile displacements at ground surface, and bearing capacity of instrumented vertical single flexible model piles in homogeneous loose sand and soft clay under central inclined loads have been investigated. The results of these load tests are compared with theoretical estimates based on the concept of an effective embedment depth of equivalent rigid piles. Reasonable agreement has been found between the observed and predicted behaviour of flexible piles. The analyses are also compared with the results of some field case records. Key words: bending moments, clay, displacements, inclined loads, instrumentation, lateral soil pressure, model test, pile, sand.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2117
Author(s):  
Keke Li ◽  
Wenyuan Xu ◽  
Liang Yang

The deformation characteristics of a raised and widened old Chinese roadway on a soft soil foundation are investigated in this study via finite element numerical simulation. The rules of ground surface settlement, slope foot lateral displacement, and ground surface settlement evolution of the roadbed under three modes (one-time construction of an eight-lane expressway, widened four-lane expressway, and raised/widened four-lane expressway) are compared. The ground surface settlement process of the eight-lane road foundation, which is formed by first widening and then raising the road, is highly complex. The ground surface settlement curve under the old road foundation increases and then decreases. The lateral displacement of the slope foot also interacts with the widening and raising of the eight-lane roadbed foundation. The range of lateral displacement is 70.05, 42.58, 124.81, 104.54 mm. Fifteen years after construction, the total settlement of the raised and widened roadbed is much larger than that of the one built directly. The total settlement values at the center of the two roadbeds are 297.05 and 234.85 mm, respectively. This manuscript provides data support for the reconstruction and expansion of roads on soft soil foundations, for choosing appropriate construction methods to build roads, and for avoiding major road damage, which is of great significance to the construction of road infrastructure in the future.


Author(s):  
M. V. Sokolov ◽  
S. M. Prostov ◽  
O. V. Gerasimov

Purpose: Prediction of geomechanical state of soft-soil foundation of buildings before and after compaction, reinforcement or stabilization. Calculation of parameters of pressure injec-tion while stabilizing the soft man-made soil foundation, development of recommendations for parameter adjustment of pressure injection.Methods: Numerical methods and computer mod-eling of the soil foundation using the finite element method for studying its geomechanical state of a mining building with regard to heterogeneities of the local geological structure and changes in the physical and mechanical properties of soils.Research findings: The obtained results are based on engineering and geological surveys of the soil foundation of the mining building composed of man-made bulk soils. The stress-strain state of the soil foundation is simulated. As a result of injection compaction the geomechanical state of the soil mass chang-es.Practical implications: Recommendations are given for the parameter adjustment of the injection method. It is shown that the pressure injection method is undoubtedly effective for the soil stabilization for buildings.  


2014 ◽  
Vol 695 ◽  
pp. 613-616
Author(s):  
Mohd Faiz Mohammad Zaki ◽  
Mohammad Fadzli Ramli ◽  
Afizah Ayob ◽  
Mohd Taftazani Ahmad

It is becoming a great challenge for civil engineers to design a foundation which able to minimize the effect of an earthquake. A major earthquake produces a strong ground motion in the subsoil and surface structures supported on the soil mass will be induced to move and absorb the dynamic forces. Seismic retrofit of existing foundations is an alternative. However, the modification of this existing foundation toward earthquake resistances raises issues which are far from being totally resolved. Innovative material such as EPS is widely accepted in structural engineering due to its characteristic to absorb the dynamic force effectively. This EPS material demonstrated the practicality and has been applied for geotechnical engineering for various reasons. Based on this, a research which is related to the application of EPS in mitigating the earthquake forces, particularly for raft foundations was conducted properly in this research. The various types and thickness of EPS located beneath the raft foundation and over the soft soil are studied. A finite element program is utilized to develop the computer simulation models. Based on the results, Expended Polystyrene (EPS) Geofoam, placed beneath the raft foundation is able to produces the minimum settlements when subjected to earthquake loading rather than raft foundation modeled without EPS and increasing the density of EPS will simultaneously decrease the settlement of a foundation.


1993 ◽  
Vol 30 (3) ◽  
pp. 464-475 ◽  
Author(s):  
K.D. Eigenbrod

Slow, shallow ground movements in a slope near Yellowknife caused excessive tilting of timber piles that supported an engineering structure. To avoid damage to the structure, the pile foundations had to be replaced by rigid concrete piers that were designed to resist the forces of the moving soil mass. Downhill movements were rather slow and, during an initial inspection, were indicated only by soil that was pushed up against a series of piles on their uphill sides, while gaps had formed on their downhill sides. No open cracks or bulging was observed on the slope. A stability analysis indicated that the slope was not in a state of limit equilibrium. To obtain a better understanding of the creep movements in the slope and their effect on the rigid concrete piers, extensive instrumentation was carried out after the construction of the piers. This included slope indicators, piezometers, thermistors, and total-pressure cells against one of the concrete piers. In addition, a triaxial testing program was undertaken in which the effect of cyclic pore-water pressure changes on the long-term deformations of the shallow clay layer was investigated. From the data collected in the field and laboratory, it could be concluded that (i) tilting of the original timber piles was caused by downslope movements related to cyclic pore-water increases; (ii) the lateral soil movements increased almost linearly with depth from 2 m below the ground surface, with no indication of a slip surface; and (iii) the pressures exerted by the moving soil mass against the rigid concrete piers within the soil mass were equal to the passive resistance activated within the moving soil mass. Key words : soil creep, slope movements, soil pressures, pore-water pressures, freezing pressures, permafrost, cyclic loading.


2011 ◽  
Vol 48 (12) ◽  
pp. 1841-1854 ◽  
Author(s):  
Kentaro Yamamoto ◽  
Andrei V. Lyamin ◽  
Daniel W. Wilson ◽  
Scott W. Sloan ◽  
Andrew J. Abbo

This paper focuses mainly on the stability of a square tunnel in cohesive–frictional soils subjected to surcharge loading. Large-size noncircular tunnels are quickly becoming a widespread building technology by virtue of the development of advanced tunneling machines. The stability of square tunnels in cohesive–frictional soils subjected to surcharge loading has been investigated theoretically and numerically, assuming plane strain conditions. Despite the importance of this problem, previous research on the subject is very limited. At present, no generally accepted design or analysis method is available to evaluate the stability of tunnels or openings in cohesive–frictional soils. In this study, a continuous loading is applied to the ground surface, and both smooth and rough interface conditions between the loading and soil are modelled. For a series of tunnel geometries and material properties, rigorous lower and upper bound solutions for the ultimate surcharge loading of the considered soil mass are obtained by applying recently developed numerical limit analysis techniques. The results obtained are presented in the form of dimensionless stability charts for practical convenience, with the actual surcharge loads being closely bracketed from above and below. As a handy practical means, upper bound rigid-block mechanisms for square tunnels have also been developed, and the obtained values of collapse loads were compared with the results from numerical limit analysis to verify the accuracy of both approaches. Finally, an expression that approximates the ultimate surcharge load of cohesive–frictional soils with the inclusion of shallow square tunnels has been devised for use by practicing engineers.


2012 ◽  
Vol 580 ◽  
pp. 477-480
Author(s):  
Yong Suo Li

The computer-aided design method is used in modeling for the interaction between pile and geotechnical material soil. The behavior of the shear coupling springs is identical to the shear behavior of a grouted cable. Then a numerical model is founded by FLAC3D, deformation and stress responses are obtained as well as the mechanical response of pile during calculation, whose result reveals the mechanism of pile with soil under the load of gravitation and load transferring mode along pile shaft for different ground surface surcharge load, during simulation, the soil consists of two types, the less consolidated soil and normal consolidated soil, both the negative skin friction stress and positive skin friction stress are studied.


1982 ◽  
Vol 19 (3) ◽  
pp. 514-523 ◽  
Author(s):  
R. M. Bustin ◽  
W. H. Mathews

A 6 m thick coal seam of the Upper Jurassic and Lower Cretaceous Mist Mountain Formation in the southeastern Canadian Cordillera has been burning since 1936. The upper 3 m of coal is being consumed to an estimated depth of 20 m. Temperatures in excess of 1100 °C are locally reached, resulting in the melting of overlying sandstones and shales. The melted and vitrified rocks contain a new suite of minerals, including diopside, anorthite, cristobalite, and tridymite. Underlying the burnt coal ash is a zone of coke averaging about 10 cm thick, which is in turn underlain by unaltered coal.Within the area of combustion three zones can be distinguished: an advance zone, where open cracks are developed at the ground surface; a zone of active combustion, where volatiles driven off the coal burn en route to the surface and at the mouth of vents; and an abandoned zone marked by vents, some of which act as air intakes. Approximately 1000 t/year of coal is consumed, giving an energy release of about 1 MW. The heat generated is carried both forward and upward by convecting gas, thereby coking the coal and baking the roof rock. Little heat is carried downward, as evident from a sharp decrease in vitrinite reflectance below the zone of combustion.The baked roof rocks are brittle and extensively fractured, providing little roof support. The completely fused and scoriaceous rock and welded associated breccias, on the other hand, have greater coherence. This welding hinders roof collapse and thereby assists the passage of gases.


2013 ◽  
Vol 35 (2) ◽  
pp. 3-17 ◽  
Author(s):  
Rafik Demagh ◽  
Fabrice Emeriault

Abstract The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction and are not easy to represent in a complete numerical simulation. Consequently, the tunnelling- induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite differences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of movements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse Subway Line B for which experimental data are available and where the soil is saturated and highly overconsolidated. A comparison made between the numerical simulation results and the insitu measurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding the adopted representation of the different operations performed by the tunnel boring machine (excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting of the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular behaviour origin observed on the ground surface and within the solid soil mass, till now not mentioned in the literature.


Sign in / Sign up

Export Citation Format

Share Document