scholarly journals Study on the Shifting Quality of the CVT Tractor under Hydraulic System Failure

2020 ◽  
Vol 10 (2) ◽  
pp. 681 ◽  
Author(s):  
Guangming Wang ◽  
Yue Song ◽  
Jiabo Wang ◽  
Wanqiang Chen ◽  
Yunlian Cao ◽  
...  

The failure of a hydraulic system will affect the shifting quality and driving safety of a CVT tractor. In order to reveal the response of the tractor under different hydraulic system failures without destroying the transmission, the following methods are proposed in this paper: firstly, building the simulation model of CVT; secondly, building a test bench to test and verify the transmission model to ensure that the simulation model can accurately predict the response of CVT under different clutch oil pressures; thirdly, obtaining the fault oil pressure data without starting the engine and taking the data of fault oil pressure as the input variable of the simulation model; finally, obtaining the response of the CVT tractor under different hydraulic system failures by simulation. It is found that the damage of the seal ring inside the rotary joint has little effect on shifting quality; oil way block can lead to greater shift impact; when seal ring damage and oil way block occur together, the clutch cannot reach the minimum working pressure; clutch piston jamming and oil leak can cause power interruption of the tractor. The results show that it is feasible to study the response of CVT in fault mode by simulation.

2014 ◽  
Vol 687-691 ◽  
pp. 496-499
Author(s):  
Jie Wang

The hydraulic system of radiator fin blanking machine plays a leading role in the radiator fin production. Its performance directly affects the efficiency and quality of product line. The hydraulic system of blanking machine for radiator was composed of blanking circuit and support circuit. The hydraulic system realizes the cutting action using the reciprocating movement of the hydraulic cylinder. The hydraulic system simulation model was built by the simulation software of AMESim in this paper. Using the simulation model, the simulation analysis of the dynamic characteristics of hydraulic system were completed. The hydraulic system has been through the debugging and put into production, running in good condition.


2014 ◽  
Vol 721 ◽  
pp. 342-348
Author(s):  
Wan Rong Wu ◽  
Jian Chao Yao

Based on the shortcomings of traditional multi actuator composite action on its coordination and load adaptability, this paper has put forward a hydraulic system model where separate meter-in separate meter-out controls the multi actuator, according to different action working conditions of actuator, it has provided a composite control strategy based on pressure flow, and through AMEsim and MATLAB, it has established the composite action hydraulic transmission model of double-actuator system and simulation model of control system, and then conducted co-simulation to verify the designed controller’s good coordination and load adaptability to the separate meter-in and separate meter-out control system under different composite action working conditions.


2021 ◽  
pp. 1-12
Author(s):  
Zhe Li

 In order to improve the simulation effect of complex traffic conditions, based on machine learning algorithms, this paper builds a simulation model. Starting from the macroscopic traffic flow LWR theory, this paper introduces the process of establishing the original CTM mathematical model, and combines it with machine learning algorithms to improve it, and establishes the variable cell transmission model VCTM ordinary transmission, split transmission, and combined transmission mathematical expressions. Moreover, this paper establishes a road network simulation model to calibrate related simulation parameters. In addition, this paper combines the actual needs of complex traffic conditions analysis to construct a complex traffic simulation control model based on machine learning, and designs a hybrid microscopic traffic simulation system architecture to simulate all relevant factors of complex road conditions. Finally, this paper designs experiments to verify the performance of the simulation model. The research results show that the simulation control model of complex traffic conditions constructed in this paper has certain practical effects.


Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Guoliang Ma ◽  
Kaixian Ba ◽  
Zhiwu Han ◽  
Zhengguo Jin ◽  
Bin Yu ◽  
...  

SUMMARY In this paper, mathematical models of kinematics, statics and inverse dynamics are derived firstly according to the mechanical structure of leg hydraulic drive system (LHDS). Then, all the above models are integrated with MATLAB/Simulink to build the LHDS simulation model, the model not only considers influence of leg dynamic characteristics on hydraulic system but also takes into account nonlinearity, variable load characteristics and other common problems brought by hydraulic system, and solves compatibility and operation time which brought by using multiple software simultaneously. The experimental results show the simulation model built in this paper can accurately express characteristics of the system.


2021 ◽  
Vol 13 (11) ◽  
pp. 5795
Author(s):  
Sławomir Biruk ◽  
Łukasz Rzepecki

Reducing the duration of construction works requires additional organizational measures, such as selecting construction methods that assure a shorter realization time, engaging additional resources, working overtime, or allowing construction works to be performed simultaneously in the same working units. The simultaneous work of crews may affect the quality of works and the efficiency of construction processes. This article presents a simulation model aimed at assessing the impact of the overlap period on the extension of the working time of the crews and the reduction of a repetitive project’s duration in random conditions. The purpose of simulation studies is to provide construction managers with guidelines when deciding on the dates of starting the sequential technological process lines realized by specialized working crews, for sustainable scheduling and organization of construction projects.


2011 ◽  
Vol 7 (1) ◽  
pp. 17-31
Author(s):  
Eleonóra Kecskés-Nagy ◽  
Milan Koszel ◽  
István Sztachó-Pekáry

The objective of the work was to determine the influence of working pressure and working speed on drop tracks size and changes in flow rate of flat fan nozzles. New nozzles and nozzles after laboratory wear were tested. The influence of nozzles wear on drop tracks size was tested. It was found that the increase in liquid flow rate resulted in higher values of mean diameter of the droplet track. The increase in working pressure or working speed causes decrease in drop tracks size and reduction in merging of droplets on sprayed surface. The increase of the wear was followed by increased coverage rate. This phenomenon is especially dangerous when using nozzles with a considerable wear for agricultural spraying since this causes ecological threat to environment.


Author(s):  
Sven Herold ◽  
William Kaal ◽  
Tobias Melz

In order to realize dielectric elastomer stack actuators suitable for dynamic applications a new actuator design with rigid, perforated electrodes is developed. The low surface resistance of the metal electrodes predestines this concept for dynamic applications where higher currents are present. Detailed numerical analyses are performed to show the potential of this approach, to study the complex material deformation and to optimize the aperture geometry. A multilayer stack actuator is then manufactured and characterized experimentally under various load conditions to gain suitable parameters for a parametrized model. It is subsequently used to attenuate vibrations of a truss structure. By careful adjusting the parameters it functions both as passive absober and as actuator. A comparison of experimental and simulation results proves the high quality of the simulation model. The work shows the great potential of the new design concept for future applications especially in the field of smart structures.


2019 ◽  
Vol 86 ◽  
Author(s):  
Alcides Marangoni Junior ◽  
Marcelo da Costa Ferreira

ABSTRACT Manual backpack sprayers are widely used in rural properties in Brazil. However, studies that assess their working characteristics, especially spray tip models and working pressure conditions, are scarce. Thus, the aim of this study was to assess how much the working pressure and spray tips influence the distribution quality of phytosanitary spray solutions in manual backpack sprayers. Four spray nozzles (standard flat-fan Magnojet TP11002, turbo flat-fan TeeJet TT11002, hollow-cone TeeJet TXA8002, and disc-core) were assessed in a patternator table at 1, 2, 3, and 4 bar. Analyses of spray distribution profile were performed by symmetry and the coefficient of variation (CV) analysed by the Tukey’s test (p < 0.05). Spray tip models and working pressure influenced in more than 100% the distribution uniformity values of spray solution and in about 50% the useful range of the phytosanitary treatment. Among the models assessed in this study, the turbo flat-fan spray nozzle presents the best set of characteristics to be indicated for manual backpack sprayers aiming at field phytosanitary treatments.


2018 ◽  
Vol 216 ◽  
pp. 02012 ◽  
Author(s):  
Konstantin Kornienko ◽  
Sergei Bessonenko

To increase the hump yard capacity, it is necessary to ensure high quality of sorting track occupancy. The purpose of this paper is to study the effect of changing the track profile on the quality of its occupancy. The simulation model developed for occupancy of sorting tracks based on the calculation of the speed of the cut and taking the following into consideration was used for the study: the possibility of starting the cut movement after a stop, errors in operation of the devices in charge of the speed of releasing the cut to the track, the possibility of displacement of the cars when the next cut collides with them. A real profile of the sorting facility track was analyzed as an example of it. It was determined that the profile caused strong effect on the track occupancy quality. The sagging of the profile causes an increase in the probability of collision of the cuts with exceeding the permissible speed. An increase in the up-gradient reduces the range of the run-off distance, which in turn causes an increase in the number of car back-ins. Profile correction will allow increasing the track occupancy quality.


Sign in / Sign up

Export Citation Format

Share Document