scholarly journals Assessment of Areal Methane Yields from Energy Crops in Ukraine, Best Practices

2020 ◽  
Vol 10 (13) ◽  
pp. 4431
Author(s):  
Ievgeniia Morozova ◽  
Hans Oechsner ◽  
Mykola Roik ◽  
Benedikt Hülsemann ◽  
Andreas Lemmer

Growing and utilizing bioenergy crops as feeding substrates in biogas plants may aid the development of the biogas sector in Ukraine. Therefore, research was done on potential methane yields from 22 high-yield varieties of 7 different crops grown in Ukraine for their biogas production suitability. Annual crops (maize, soybean, sweet sorghum and sorghum hybrids) and perennials (miscanthus, paulownia and switchgrass) harvested at three different harvesting times (H1, H2 and H3) related to specific stages of phenological development were investigated. The perennial crops studied were from different vegetation years. The samples were analysed in Ukraine on their dry matter- and volatile solids contents, dry matter yield (DMY) and crop nitrogen (N) uptake. The 55 °C -dried samples were delivered to Germany for their analysis with the Hohenheim Biogas Yield Test (HBT) on their specific methane yield (SMY). Based on DMY and SMY, the areal methane yields (AMY) were calculated. The highest SMY and AMY were found for maize, sweet sorghum and miscanthus. The highest average SMY of 0.35 ± 0.03 m3CH4 kgVS−1 was found for maize samples harvested at H2. Miscanthus “Giganteus” from the 8th vegetation year harvested at H1 has shown the highest AMY of 7404.50 ± 199.00 m3CH4 ha−1.

2019 ◽  
Vol 2 (1) ◽  
pp. 52-59 ◽  
Author(s):  
A G Jiya ◽  
U J Ijah ◽  
M Galadima ◽  
U G Akpan

A response surface methodology (RSM) was utilized in this study for optimisation of biogas production process. The optimal values of process parameter capable of giving a high yield of biogas were established. A biodigester of 20 liters capacity capable of producing biogas from rural household domestic waste was designed, constructed and used in the study. Its major units are the anaerobic and gas collecting units. The process parameters investigated are the pH of the substrate, detention time and ratio of substrate to water while the yield of biogas was used as performance characteristics. The experiment was based on a central composite rotatable design (CCRD). The results revealed that the highest yield of biogas was obtained from a combination of detention time of 30 days, ratio of substrate to water of 1:1 and pH of 7, while the least yield of biogas of 11 cm3 was obtained from combination of detention time of 30 days, ratio of substrate to water of 1:3 and pH of 2. Numerical optimization carried out with the goal of maximizing the biogas yield revealed optimum values of detention time of 40 days, the ratio of substrate and water used; 1:2 and pH of 6.71 for biogas of 771.77 cm3 with the desirability of 0.9850. The detention time had the highest significant effects on the yield of biogas. The results of this study provided standard input process variables capable of yielding the optimum yield of biogas for the rural community.


2019 ◽  
Vol 65 (No. 7) ◽  
pp. 369-376
Author(s):  
Marta Kupryś-Caruk ◽  
Sławomir Podlaski

The aim of the research was to determine the impact of double-cut harvest system on yield, as well as on suitability of Miscanthus × giganteus biomass for ensiling and biogas production. Biomass was harvested at the end of June (harvest I) and at the beginning of October (harvest II, regrowth). A single-cut regime at the end of October was also conducted. Biomass from harvests I and II was ensiled and subjected to anaerobic fermentation. The total dry matter (DM) yield from double-cut harvest system was similar to the DM yield from one-cut harvest, but two harvests per year had a positive effect on chemical composition of the biomass. C/N ratio and lignin content in the biomass from harvest I was lower compared to the single-cut biomass. Double harvest biomass was susceptible to ensiling, however, the biomass from harvest I characterized by low dry matter and water soluble sugars content resulted in poorer quality of the obtained silage (butyric acid was present). There were no significant differences between the methane yields obtained from ensiled biomass from harvests I and II.


2011 ◽  
Vol 59 (3) ◽  
pp. 223-229
Author(s):  
Z. Hegyi ◽  
Z. Zsubori-Tóth ◽  
J. Pintér ◽  
C. Marton

Experiments have been underway in Martonvásár for many years to develop leafy silage hybrids, which have a greater aboveground mass than conventional silage hybrids. The best hybrids for biogas production would be those that produce a large quantity of biomass and are rich in starch. The chief characteristic of leafy hybrids is that they have more leaves than normal hybrids. Due to this enhanced leaf area above the ear, the vegetative period of leafy genotypes is shorter, while the grain-filling period is longer, which has a positive effect on both yield and grain quality. The results of the present experiment show that during the anaerobic fermentation of the silage, leafy hybrids produced more biogas (640 l per 1000 g dry matter) than conventional hybrids (606 l per 1000 g dry matter). There were no significant differences between the methane contents of the leafy and non-leafy hybrids tested in the experiment. A strong positive correlation was found between biogas yield and the starch content of the silage, and a moderate positive correlation between biogas yield and the sugar content. The correlation between biogas yield and the lignin and protein contents was negative, in accordance with other literary data.


2014 ◽  
pp. 232-240 ◽  
Author(s):  
Philipp Starke ◽  
Christa Hoffmann

Sugar beet is considered as biogas substrate because of its high yield. However, varieties differ in quality, in particular sugar content, which might affect biogas formation. The study aimed at analysing the impact of different beet qualities on biogas formation. Furthermore, parameters describing beet quality for anaerobic digestion should be found. From 2009 to 2011 field trials with several sugar beet varieties and a fodder beet variety were conducted with different N application rates at sites near Göttingen and Regensburg to get a broad range of beet qualities. The dry matter composition of beets, leaves, winter beet, bolters and maize was analysed. Discontinuous batch trials with fresh beet material were conducted to determine biogas formation. Sugar beet varieties did not differ in their dry matter composition and thus in biogas formation, whereas differences occurred between sugar beet and other substrates. Sugar beet was characterised by a high content of organic dry matter (98% oDM). The degradation time was mainly affected by the crude fibre content of the material. Therefore 90% of the biogas from sugar beet was formed within 3.5 days, whereas from winter beet, bolters and maize it took more than 10 days. The calculation of the specific biogas yield of different sugar beet qualities with two formulae resulted in lower values than determined in batch trials. A formula was derived to assess sugar beet quality for anaerobic digestion based on the sugar content, as increasing sugar contents lead to increasing specific biogas yields per kilogramme fresh matter.


2013 ◽  
Vol 805-806 ◽  
pp. 208-214
Author(s):  
Hui Huang ◽  
Yuan Fang Deng ◽  
Zhi Peng Cheng ◽  
Ning Xu ◽  
Ji Ming Xu

In order to alleviate the shortage of raw materials in rural household biogas production and promote utilization of the formidable alien invasive species-alternanthera philoxeroides, mixed fermentation by alternanthera philoxeroides and corn stalk was designed and the performance was investigated in separated and different dry matter ratios (18.33, 6.25 and 3.46) treatments, by batch model at (35±1)°C.Results indicated that, the best biogas production appeared in the treatment of dry matter ratio of 6.25 when total solid (TS) loading of raw material was 8% and inoculating amount of biogas slurry was 20%, with TS and volatile solid (VS) biogas yields, and methane content of 325.74±5.11 mL/g, 456.06±4.87 mL/g and 60.56±1.23 %, respectively. Highly significant positive correlations (p˂0.01) were found between degradation rate of VS and four indexes such as average daily biogas yield, TS biogas yield, VS biogas yield and rate of change of total organic carbon (TOC) of fermentation liquid, while positive correlation between degradation rate of VS and methane content, and negative correlation between it and rate of change of volatile fatty acid (VFA), were not significant (p>0.05). Mixed fermentation by alternanthera philoxeroides and corn stalk could improve biogas production and achieve the gas peak in advance, therefore it had good feasibility.


Author(s):  
Tomáš Vítěz ◽  
Tomáš Koutný ◽  
Milan Geršl ◽  
Jan Kudělka ◽  
Nuttakan Nitayapat ◽  
...  

Biogas production in the Czech Republic has expanded substantially, including marginal regions for maize cultivation. Therefore, there are increasingly sought materials that could partially replace maize silage, as a basic feedstock, while secure both biogas production and its quality.Two samples of rye grass (Lolium multiflorum var. westerwoldicum) silage with different solids content 21% and 15% were measured for biogas and methane yield. Rye grass silage with solid content of 15% reached an average specific biogas yield 0.431 m3·kg−1 of organic dry matter and an average specific methane yield 0.249 m3·kg−1 of organic dry matter. Rye grass silage with solid content 21% reached an average specific biogas yield 0.654 m3·kg−1 of organic dry matter and an average specific methane yield 0.399 m3·kg−1 of organic dry matter.


2014 ◽  
Vol 493 ◽  
pp. 262-266
Author(s):  
Daniel Nett ◽  
I. Nyoman Suprapta Winaya ◽  
I. Made Agus Putrawan ◽  
Rolf Wartmann ◽  
Werner Edelmann

This research aims to give an overview on how to improve the biogas yeild in Balinese digester plants using various co-substrates which are available in Bali. A series testing on the digestibility of substrates were set up either in the field or in the biogas laboratory. In-field analyses like testing the CO2-content and taking samples from digested manure were undertaken. Analyses such as dry matter (DM) and organic dry matter (oDM) determination, pH measurement and FOS/TAC were handled in the biogas laboratory. The huge number of different fruits in Bali gives a good opportunity to use their wastes like Durian hulls and Banana peelings, which can not be used anymore, as co-substrates in biogas plants. The results of these investigations allow to estimate the additional biogas yield, when adding co-substrates to a cow manure biogas plant.


2012 ◽  
Vol 253-255 ◽  
pp. 897-902
Author(s):  
Li Jun Shi ◽  
Miao Huang ◽  
Wei Yu Zhang ◽  
Hui Fen Liu

In this paper anaerobic digestion of dairy manure and straw was conducted to produce biogas. Under the conditions of C/N=25-30 and T=36°C, five kinds of dry matter concentration of 20%, 15%, 10%, 5% and 2.5% were tested to investigate the effect of dry matter concentration on anaerobic digestion. The result showed that first 30 days was the biogas production peak phase and VFA concentrations in the leachate were also high during the same period. When dry matter concentration increased, biogas production appeared larger fluctuation, and alkalinity and NH4+-N concentration in the leachate also increased with higher organic loading rate. Among five kinds of dry matter concentration, 10% was more suitable for anaerobic digestion to produce biogas with total biogas production amount of 4710 mL after 30 days and volumetric biogas yield of 0.313 m3•m-3•d-1. These results could provide instructive meaning to the engineering application of dry anaerobic digestion.


2020 ◽  
Vol 10 (7) ◽  
pp. 2589 ◽  
Author(s):  
Benedikt Hülsemann ◽  
Lijun Zhou ◽  
Wolfgang Merkle ◽  
Juli Hassa ◽  
Joachim Müller ◽  
...  

High precision of measurement of methane potential is important for the economic operation of biogas plants in the future. The biochemical methane potential (BMP) test based on the VDI 4630 protocol is the state-of-the-art method to determine the methane potential in Germany. The coefficient of variation (CV) of methane yield was >10% in several previous inter-laboratory tests. The aim of this work was to investigate the effects of inoculum and the digestion system on the measurement variability. Methane yield and methane percentage of five substrates were investigated in a Hohenheim biogas yield test (D-HBT) by using five inocula, which were used several times in inter- laboratory tests. The same substrates and inocula were also tested in other digestion systems. To control the quality of the inocula, the effect of adding trace elements (TE) and the microbial community was investigated. Adding TE had no influence for the selected, well- supplied inocula and the community composition depended on the source of the inocula. The CV of the specific methane yield was <4.8% by using different inocula in one D-HBT (D-HBT1) and <12.8% by using different digestion systems compared to D-HBT1. Incubation time between 7 and 14 days resulted in a deviation in CV of <4.8%.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 37 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Agnieszka Wolna-Maruwka ◽  
Piotr Boniecki ◽  
Maciej Zaborowicz

It was the objective of this study to verify the efficiency and stability of anaerobic digestion (AD) for selected confectionery waste, including chocolate bars (CB), wafers (W), and filled wafers (FW), by inoculation with digested cattle slurry and maize silage pulp. Information in the literature on biogas yield for these materials and on their usefulness as substrate in biogas plants remains to be scarce. Owing to its chemical structure, including the significant content of carbon-rich carbohydrates and fat, the confectionery waste has a high biomethane potential. An analysis of the AD process indicates differences in the fluctuations of the pH values of three test samples. In comparison with W and FW, CB tended to show slightly more reduced pH values in the first step of the process; moreover an increase in the content of volatile fatty acids (VFA) was recorded. In the case of FW, the biogas production process showed the highest stability. Differences in the decomposition dynamics for the three types of test waste were accounted for by their different carbohydrate contents and also different biodegradabilities of specific compounds. The highest efficiency of the AD process was obtained for the filled wafers, where the biogas volumes, including methane, were 684.79 m3 Mg−1 VS and 506.32 m3 Mg−1 VS, respectively. A comparable volume of biogas (673.48 m3 Mg−1 VS) and a lower volume of methane (407.46 m3 Mg−1 VS) were obtained for chocolate bars. The lowest volumes among the three test material types, i.e., 496.78 m3 Mg−1 VS (biogas) and 317.42 m3 Mg−1 VS (methane), were obtained for wafers. This article also proposes a method of estimation of the biochemical methane potential (theoretical BMP) based on the chemical equations of degradation of sugar, fats, and proteins and known biochemical composition (expressed in grams).


Sign in / Sign up

Export Citation Format

Share Document