scholarly journals Impact of Deep Eutectic Solvents on Extraction of Polyphenols from Grape Seeds and Skin

2020 ◽  
Vol 10 (14) ◽  
pp. 4830
Author(s):  
Nevena Dabetić ◽  
Vanja Todorović ◽  
Manuela Panić ◽  
Ivana Radojčić Redovniković ◽  
Sladjana Šobajić

In the past few years, research efforts have focused on plant exploitation for deriving some valuable compounds. Extraction has been usually performed using petrochemical and volatile organic solvents, but nowadays, increased recognition of environmental pollution has prompted the utilization of green solvents as alternatives. Therefore, the aim of the present study was to exploit deep eutectic solvents (DES) (choline chloride: citric acid and choline chloride: glucose) as solvents for extracting valuable phenolic antioxidants from grapes. Investigation was conducted on ten grape varieties, observing seeds and skin as different matrix. Total polyphenol content (TPC) was determined by Folin-Ciocalteu spectrophotometric microassay. Antioxidant activity was investigated using four different tests and results were combined in a unique Antioxidant Composite Index (ACI) to reveal comprehensive information about this biological activity. Polyphenol compounds were identified and quantified with the aim of HPLC-diode array detector (DAD). Overall results support that DES (particularly choline chloride: citric acid) were comparable to conventional solvent, and in most cases even outperformed acidified aqueous ethanol (concerning extraction efficiency and antioxidant activity). Regardless of varietal distinctions, grape seeds have higher antioxidant capacity compared to grape skin, and such findings are according to their phenol compound concentrations.

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2527
Author(s):  
Ruimin Wang ◽  
Weimin Zhang ◽  
Ruiping He ◽  
Wu Li ◽  
Lu Wang

This study evaluates the application of eco-friendly deep eutectic solvents (DESs) in the extraction of phenolic antioxidants from dogbane leaf-tea (DLT). The results showed DESs with lower viscosity allowed an efficient extraction of significantly higher contents of total phenolics or flavonoids. An innovative and high-efficient solvent, choline chloride-levulinic acid (ChCl-LevA), was screened and used in ultrasonic-assisted extraction (UAE) of phenolic compounds from DLT. According to full factorial design experimental results, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, and anti-α-glucosidase activity (α-GIA) of the DLT extracts were simultaneously optimized by response surface methodology. Sonication temperature and water content in ChCl-LevA were found to be the major factors affecting the TPC, TFC, antioxidant activity, and α-GIA of DLT extracts. Under the optimum parameters (water content in ChCl-LevA was 45%, sonication temperature was 50 °C, and extraction time was 30 min), the measured results for all the responses were obtained as follows: TPC-91.38 ± 7.20 mg GAE/g DW, TFC-84.12 ± 3.47 mg RE/g DW, ABTS+-492 ± 7.33 mmol TE/g DW, FRAP-6235 ± 121 μmol Fe(II)/g DW and α-GIA-230 ± 7.59 mmol AE/g DW, which were consistent with the predicted values. In addition, strongly significant positive correlations were observed between TPC/TFC and bio-activities of the DLT extracts. HPLC results indicated high contents of (-)-epigallocatechin (4272 ± 84.86 μg/g DW), catechin (5268 ± 24.53 μg/g DW), isoquercitrin (3500 ± 86.07 μg/g DW), kaempferol 3-O-rutinoside (3717 ± 97.71 μg/g DW), and protocatechuic acid (644 ± 1.65 μg/g DW) were observed in the DLT extracts. In contrast to other extraction methods, ChCl-LevA-based UAE yielded higher TPC, TFC, individual phenolic contents, stronger antioxidant activity, and α-GIA. Scanning electron microscope (SEM) analysis further confirmed that ChCl-LevA-based UAE enhanced the disruption of cell wall structure, thereby making more phenolic antioxidants released from DLT. In short, ChCl-LevA-based UAE was confirmed to be an innovative and high-efficient method for extraction of phenolic antioxidants from DLT. Dogbane leaves can be considered as a good tea source rich in natural antioxidants.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 242 ◽  
Author(s):  
Jeniffer Torres-Vega ◽  
Sergio Gómez-Alonso ◽  
José Pérez-Navarro ◽  
Edgar Pastene-Navarrete

Peumus boldus Mol., is a Chilean medicinal tree used for gastrointestinal and liver diseases. Such medicinal properties are associated with the presence of bioactive flavonoids and aporphine alkaloids. In this study, a new green and efficient extraction method used seven natural deep eutectic solvents (NADES) as extraction media. The extraction efficiency of these NADES was assessed, determining the contents of boldine and total phenolic compounds (TPC). Chemical profiling of P. boldus was done by high-performance liquid chromatography coupled to photo diode array detector and electrospray ion-trap mass spectrometry (HPLC-PDA-ESI-IT/MS) and electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF-MS). Among the NADES tested, NADES4 (choline chloride-lactic acid) and NADES6 (proline-oxalic acid) enable better extraction of boldine with 0.427 ± 0.018 and 2.362 ± 0.055 mg of boldine g−1 of plant, respectively. Extraction of boldine with NADES4 and NADES6 was more efficient than extractions performed with methanol and water. On the other hand, the highest TPC were obtained using NADES6, 179.442 ± 3.79 mg of gallic acid equivalents (GAE g−1). Moreover, TPC in extracts obtained with methanol does not show significant differences with NADES6. The HPLC-PAD-MS/MS analysis enable the tentative identification of 9 alkaloids and 22 phenolic compounds. The results of this study demonstrate that NADES are a promising green extraction media to extract P. boldus bioactive compounds and could be a valuable alternative to classic organic solvents.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 140 ◽  
Author(s):  
Pavlović ◽  
Jokić ◽  
Jakovljević ◽  
Blažić ◽  
Molnar

This is the first report on the extraction of cocoa bean shell (CBS) using deep eutectic solvents (DESs). Screening results with 16 different choline chloride-based DESs showed how choline chloride:oxalic acid DES was the most suitable solvent for the extraction of the bioactive compounds from CBS and that concentrations varied greatly depending on the used solvent. The DES extraction was compared to the DESs coupled with microwave extraction (MAE), and the yields of the extracted compounds were higher for DES/MAE. For theobromine, the obtained yields for DES extraction were 2.145–4.682 mg/g, and for caffeine, were 0.681–1.524 mg/g, whereas for DES/MAE, the same compounds were obtained in 2.502–5.004 mg/g and 0.778–1.599 mg/g. Antioxidant activity was also determined, using DPPH method, obtaining 24.027–74.805% activity for DES extraction and 11.751–55.444% for DES/MAE. Water content significantly influenced the extraction of targeted active compounds from CBS, whereas extraction time and temperature did not show statistically significant influence. The extraction temperature only influenced antioxidant activity. The study demonstrated how extraction using DES and microwaves could be of a great importance in the future trends of green chemistry for the production of CBS extracts rich in bioactive compounds.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Shuqiang Zhu ◽  
Dongling Liu ◽  
Xinyue Zhu ◽  
Along Su ◽  
Haixia Zhang

Deep eutectic solvents (DESs) as a new kind of green solvents have been used to extract bioactive compounds but there are few applications in extracting chrysoidine dyes. In this study, we developed an ultrasonic-assisted extraction method with choline chloride/hydrogen bond donor (ChCl/HBD) DES for the extraction of chrysoidine G (COG), astrazon orange G (AOG), and astrazon orange R (AOR) in food samples. Some experimental parameters, such as extraction time, raw material/solvent ratio, and temperature, were evaluated and optimized as follows: the ratio of ChCl/HBD, 1 : 2 (v/v); the ratio of sample/DES, 1 : 10 (g/mL); extraction time, 20 min; extraction temperature, 50°C. Under the optimized conditions, the limits of detection (μg/mL) were 0.10 for COG and 0.06 for AOG and AOR. The relative standard deviations were in the range of 1.2–2.1%. The recoveries of the three dyes were in the range of 80.2–105.0%. By comparing with other commonly used solvents for extracting chrysoidine dyes, the advantages of DESs proved them to be potential extraction solvents for chrysoidine G, astrazon orange G, and astrazon orange R in foods.


RSC Advances ◽  
2015 ◽  
Vol 5 (114) ◽  
pp. 93937-93944 ◽  
Author(s):  
Ji Li ◽  
Zhigang Han ◽  
Yongpeng Zou ◽  
Bo Yu

Choline chloride-based deep eutectic solvents (DESs), composed of alcohols, organic acids and saccharides, were used as green solvents for extraction of major catechins inCamellia sinensisleaves.


2017 ◽  
Author(s):  
Xifeng Zhang ◽  
Ji Zhang

Deep eutectic solvents (DESs) are new green solvents that have attracted the attention of the scientific community mainly due to their unique properties and special characteristics, which are different from those of traditional solvents.A method based on ultrasonically assisted deep eutectic solvent aqueous two-phase systems( UAE-DES-ATPS) was developed for extracting ursolic acid (UA) from Cynomorium songaricum Rupr. Four different types of choline chloride-based DESs were prepared.Choline chloride-glucose (ChCl-Glu) exhibited good selective extraction ability. An optimum DES-ATPS of 36% (w/w) ChCl-Glu and 25% (w/w) K2HPO4 was considered to be a satisfactory system for extracting UA. Response surface methodology (RSM) method was used to optimize the extraction of UA using UAE-DES-ATPS. The optimum ultrasound-assisted conditions were as follows: solvent to solid ratio of 15:1 (g/g), ultrasound power of 470 W, and extraction time of 54 min. Compared with the conventional UAE method, the yields were basically the same, but the presented method had higher purity. The structure of UA did not change between pure UA and UA in the upper phase by UV–vis and FT-IR. This approach using ChCl-based DES-ATPS as a novel extraction system and ultrasound as a source of energy provided better choice for the separation of active components from other natural products.


2021 ◽  
Vol 33 (5) ◽  
pp. 1115-1119
Author(s):  
R. Manurung ◽  
H. Silalahi ◽  
O. Winda ◽  
A.G. Siregar

The high cellulose content in cassava peel has an opportunity to produce bio-based chemical products in 5-hydroxymethylfurfural (5-HMF) form. This study aimed to determine the optimum conditions of glucose dehydration reaction as a result of hydrolysis of the best cassava peel cellulose. The variables observed in this study were H2SO4 catalyst concentrations in the hydrolysis reaction, temperature and amount of deep eutectic solvents based on choline chloride/citric acid. The optimum dehydration reaction conditions in this study was the glucose:deep eutectic solvents mass ratio of 1:6 at the reaction temperature of 80 ºC. The highest yield of 64.50% at an initial glucose concentration of 5.70% using a 1.5% H2SO4 catalyst during the hydrolysis of cassava peel cellulose. The results obtained in this study indicated that addition of choline chloride/citric acid as deep eutectic solvent can increase the yield of 5-HMF.


2020 ◽  
Vol 22 (13) ◽  
pp. 4210-4221 ◽  
Author(s):  
Nand Peeters ◽  
Koen Binnemans ◽  
Sofía Riaño

Solvometallurgical recovery of cobalt from lithium cobalt oxide by using a choline chloride–citric acid deep eutectic solvent (DES) in presence of aluminium and copper current collectors.


2021 ◽  
Author(s):  
kishant kumar ◽  
Anand Bharti ◽  
Aditya Sinha

<table><tr><td>Deep eutectic solvents (DESs) are classified as the green solvents which are considered as an alternative to volatile organic solvents. In this work, the thermophysical, structural and transport properties of binary mixtures of DES ethaline (choline chloride (ChCl) + ethylene glycol (etgly) at a molar ratio of 1:2) with primary alcohols (methanol/ethanol) are studied using molecular dynamics (MD) simulations</td></tr></table> <br>


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 153 ◽  
Author(s):  
Martina Jakovljević ◽  
Jelena Vladić ◽  
Senka Vidović ◽  
Kristian Pastor ◽  
Stela Jokić ◽  
...  

Satureja montana L. was used in the current research as the plant exhibits numerous health-promoting benefits due to its specific chemical composition. The extraction method based on deep eutectic solvents (DESs) was used for the extraction of rutin and rosmarinic acid from this plant. Five different choline chloride-based DESs with different volumes of water (10%, 30%, and 50% (v/v)) were used for the extraction at different temperatures (30, 50, and 70 °C) to investigate the influence on rosmarinic acid and rutin content obtained by high-performance liquid chromatography with diode-array detector (HPLC-DAD) in the obtained extracts. A principal component analysis was employed to explore and visualize the influence of applied parameters on the efficiency of the extraction procedure of rutin and rosmarinic acid. Among the tested DESs, choline chloride:lactic acid (mole ratio 1:2) and choline chloride:levulinic acid (mole ratio 1:2) were the most suitable for the extraction of rutin, while for rosmarinic acid choline chloride:urea (mole ratio 1:2) was the most effective solvent. The extract showing the best antiradical activity was obtained with choline chloride:urea (mole ratio 1:1) at 30 °C and 50% H2O (v/v).


Sign in / Sign up

Export Citation Format

Share Document