scholarly journals Electroplated Functional Materials with 3D Nanostructures Defined by Advanced Optical Lithography and Their Emerging Applications

2020 ◽  
Vol 10 (24) ◽  
pp. 8780
Author(s):  
Jinseong Ahn ◽  
Seokkyoon Hong ◽  
Young-Seok Shim ◽  
Junyong Park

Electroplating has been favored to date as a surface treatment technology in various industries in the development of semiconductors, automobiles, ships, and steel due to its advantages of being a simple, solution-based process, with low cost and high throughput. Recently, classical electroplating has been reborn as an advanced manufacturing process for functional materials by combining it with unconventional optical three-dimensional (3D) nanofabrication techniques capable of generating polymer templates with high-resolution 3D periodic nanostructures. The bottom-up filling behavior of electroplating rising from a seed layer makes it possible to densely fill the nanoporous network of the template with heterogeneous inorganic materials. At this time, understanding and optimizing the process parameters (e.g., additive, current density, type of current waveform, etc.) of electroplating is critical for defect control. In addition, since electroplating is generally performed near room temperature, unlike other thin film deposition techniques, structural damage to the polymer template by heat during electroplating is almost negligible. Based on the excellent compatibility of electroplating and optical 3D nanofabrication, innovative functional materials with 3D periodic nanostructures targeting electrochemical or energy-related applications have been created. In this mini review, a strategy for producing functional materials with 3D periodic nanostructures through a templating process will be covered, and the recent cases of successful applications to electrodes for energy storage devices, electrocatalysts, and thermoelectric materials will be summarized. We will also discuss technical issues that need to be considered in the process to improve the quality of the resulting functional materials with 3D nanoarchitectures.

2002 ◽  
Vol 728 ◽  
Author(s):  
Martin O. Jensen ◽  
Scott R. Kennedy ◽  
Michael J. Brett

AbstractWe demonstrate fabrication of periodic arrays of nanometre scale square helices, with potential applications in three-dimensional photonic bandgap (PBG) materials. Processing is performed using a thin film deposition method known as Glancing Angle Deposition (GLAD). Through advanced substrate motion, this technique allows for controlled growth of square helices in a variety of inorganic materials. Organization of the helices into periodic twodimensional geometries is achieved by prepatterning the substrate surface using electron beam lithography. The regular turns of the helices yield periodicity in the third dimension, perpendicular to the substrate. We present studies of tetragonal and trigonal arrays of silicon helices, with lattice constants as low as 300 nm. By deliberately adding or leaving out seeds in the substrate pattern, we have succeeded in engineering line defects. Our periodic nanoscale structure closely matches an ideal photonic band gap architecture, as recently proposed by Toader and John. While our fabrication technique is simpler than most suggested PBG schemes, it is highly versatile. A wide range of materials can be used for GLAD, manipulation of lattice constant and helix pitch ensures optical tunability, and the GLAD films are robust to micromachining.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1691 ◽  
Author(s):  
Yuan-Fong Chou Chau ◽  
Kuan-Hung Chen ◽  
Hai-Pang Chiang ◽  
Chee Ming Lim ◽  
Hung Ji Huang ◽  
...  

In this paper, a periodic metallic–dielectric nanorod array which consists of Si nanorods coated with 30 nm Ag thin film set in a hexagonal configuration is fabricated and characterized. The fabrication procedure is performed by using nanosphere lithography with reactive ion etching, followed by Ag thin-film deposition. The mechanism of the surface and gap plasmon modes supported by the fabricated structure is numerically demonstrated by the three-dimensional finite element method. The measured and simulated absorptance spectra are observed to have a same trend and a qualitative fit. Our fabricated plasmonic sensor shows an average sensitivity of 340.0 nm/RIU when applied to a refractive index sensor ranging from 1.0 to 1.6. The proposed substrates provide a practical plasmonic nanorod-based sensing platform, and the fabrication methods used are technically effective and low-cost.


2021 ◽  
Vol 16 (2) ◽  
pp. 1-11
Author(s):  
José Enrique Eirez Izquierdo ◽  
José Diogo da Silva Oliveira ◽  
Vinicius Augusto Machado Nogueira ◽  
Dennis Cabrera García ◽  
Marco Roberto Cavallari ◽  
...  

This work is focused on the bias stress (BS) effects in Organic Thin-Film Transistors (OTFTs) from poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) on both highly-doped Si and glass substrates. While the former had a thermally-grown SiO2 dielectric, the latter demanded an alternative dielectric that should be capable to withstand bottom contact lithography, as well as semiconducting thin-film deposition. In addition, it should represent one more step towards flexible electronics. In order to do that, poly(4-vinylphenol) (PVP) was blended to poly(melamine-co-formaldehyde) methylated (PMF). OTFTs on glass with a cross-linked polymer dielectric had a charge carrier mobility (μ) of 4.0x10-4 cm2/Vs, threshold voltage (VT) of 18 V, current modulation (ION/OFF) higher than 1x102, and subthreshold slope (SS) of -7.7 V/dec. A negative BS shifted VT towards negative values and produced an increase in ION/OFF. A positive BS, on the other hand, produced the opposite effect only for OTFTs on Si. This is believed to be due to a higher trapping at the PVP:PMF interface with PBTTT-C14. Modeling the device current along time by a stretched exponential provided shorter time constants of ca. 105 s and higher exponents of 0.7–0.9 for devices on glass. Due to the presence of increased BS effects, the application of organic TFTs based on PVP:PMF as flexible sensors will require compensating circuits, lower voltages or less measurements in time. Alternatively, BS effects could be reduced by a dielectric surface treatment.


2021 ◽  
pp. 2150081
Author(s):  
ERMAN ERDOGAN

In this study, spin coating, which is a chemical film layer thin film deposition method, was used for coronene films that were grown on Si substrates annealed at 325, 350 and 375[Formula: see text]K to examine the impacts on the optical properties of films. This method allows for easy control of the deposition parameters such as concentration, temperature and time as well as enables the film growth at low cost. Optical (UV–Vis) spectral measurements in the wavelength range from 200[Formula: see text]nm to 800[Formula: see text]nm were used to extract the bandgap information and to calculate various optical parameters of the spin-coated coronene films. The electronic transitions on the absorption of photons of suitable energy are of indirect allowed type. The corresponding optical bandgap ([Formula: see text]) was determined. Complex dielectric constants, dissipation factor, optical and electrical conductances and refractive index of coronene films were analyzed as a function of temperature. As the film annealing temperature was increased, the dielectric constants and the refractive index values increased, whereas the optical bandgap and electrical and optical conductivity values decreased.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 985 ◽  
Author(s):  
Lazaros Tzounis ◽  
Petros I. Bangeas ◽  
Aristomenis Exadaktylos ◽  
Markos Petousis ◽  
Nectarios Vidakis

A versatile method is reported for the manufacturing of antimicrobial (AM) surgery equipment utilising fused deposition modelling (FDM), three-dimensional (3D) printing and sonochemistry thin-film deposition technology. A surgical retractor was replicated from a commercial polylactic acid (PLA) thermoplastic filament, while a thin layer of silver (Ag) nanoparticles (NPs) was developed via a simple and scalable sonochemical deposition method. The PLA retractor covered with Ag NPs (PLA@Ag) exhibited vigorous AM properties examined by a reduction in Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60 and 120 min duration of contact (p < 0.05). Scanning electron microscopy (SEM) showed the surface morphology of bare PLA and PLA@Ag retractor, revealing a homogeneous and full surface coverage of Ag NPs. X-Ray diffraction (XRD) analysis indicated the crystallinity of Ag nanocoating. Ultraviolent-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM) highlighted the AgNP plasmonic optical responses and average particle size of 31.08 ± 6.68 nm. TEM images of the PLA@Ag crossection demonstrated the thickness of the deposited Ag nanolayer, as well as an observed tendency of AgNPs to penetrate though the outer surface of PLA. The combination of 3D printing and sonochemistry technology could open new avenues in the manufacturing of low-cost and on-demand antimicrobial surgery equipment.


2000 ◽  
Vol 616 ◽  
Author(s):  
T. Smy ◽  
D. Vick ◽  
M. J. Brett ◽  
S. K. Dew ◽  
A. T. Wu ◽  
...  

AbstractA new fully three dimensional (3D) ballistic deposition simulator 3D-FILMS has been developed for the modeling of thin film deposition and structure. The simulator may be implemented using the memory resources available to workstations. In order to illustrate the capabilities of 3D-FILMS, we apply it to the growth of engineered porous thin films produced by the technique of GLancing Angle Deposition (GLAD).


2001 ◽  
Vol 677 ◽  
Author(s):  
W. C. Liu ◽  
Y. X. Wang ◽  
C. H. Woo ◽  
Hanchen Huang

ABSTRACTIn this paper we present three-dimensional molecular dynamics simulations of dislocation nucleation and propagation during thin film deposition. Aiming to identify mechanisms of dislocation nucleation in polycrystalline thin films, we choose the film material to be the same as the substrate – which is stressed. Tungsten and aluminum are taken as representatives of BCC and FCC metals, respectively, in the molecular dynamics simulations. Our studies show that both glissile and sessile dislocations are nucleated during the deposition, and surface steps are preferential nucleation sites of dislocations. Further, the results indicate that dislocations nucleated on slip systems with large Schmid factors more likely survive and propagate into the film. When a glissile dislocation is nucleated, it propagates much faster horizontally than vertically into the film. The mechanisms and criteria of dislocation nucleation are essential to the implementation of the atomistic simulator ADEPT.


2021 ◽  
Vol 11 (24) ◽  
pp. 11689
Author(s):  
Mritunjaya Parashar ◽  
Anupama B. Kaul

During recent years, power conversion efficiencies (PCEs) of organic-inorganic halide perovskite solar cells (PSCs) have shown remarkable progress. The emergence of various thin film deposition processes to produce perovskite films, notably using solution processing techniques, can be credited in part for this achievement. The engineering of chemical precursors using solution processing routes is a powerful approach for enabling low-cost and scalable solar fabrication processes. In the present study, we have conducted a systematic study to tune the equimolar precursor ratio of the organic halide (methylammonium iodide; MAI) and metal halide (lead iodide; PbI2) in a fixed solvent mixture of N,N-dimethylformamide (DMF):dimethylsulfoxide (DMSO). The surface morphology, optical characteristics, and crystallinity of the films produced with these four distinct solutions were investigated, and our analysis shows that the MAI:PbI2 (1.5:1.5) film is optimal under the current conditions. The PSCs fabricated from the (1.5:1.5) formulation were then integrated into the n-i-p solar cell architecture on fluorine-doped tin oxide (FTO) substrates, which exhibited a PCE of ~14.56%. Stability testing on this PSC device without encapsulation at 29 °C (ambient temperature) and 60% relative humidity (RH) under one-sun illumination while keeping the device at its maximum power point showed the device retained ~60% of initial PCE value after 10 h of continuous operation. Moreover, the recombination analysis between all four formulations showed that the bimolecular recombination and trap-assisted recombination appeared to be suppressed in the more optimal (1.5:1.5) PSC device when compared to the other formulations used in the n-i-p PSC architecture.


2021 ◽  
Vol 23 (09) ◽  
pp. 1196-1206
Author(s):  
C.S.A. Raj ◽  
◽  
S. Sebastian ◽  
Susai Rajendran ◽  
◽  
...  

Cu2ZnSnS4 generally abridged as CZTS is a potential material for economical thin film solar cells, due to its appropriate band gap energy of around 1.5 eV and great absorption coefficient of above 104 cm-1. All the constituents of this material are plentiful in the earth’s crust, and they are non-hazardous making it an elegant alternative. Subsequent to the early achievement of the CZTS based solar cell with its light to electrical conversion efficiency of 0.6%, significant advancement in this research area has been attained, particularly in the last seven years. Currently, the conversion effectiveness of the CZTS thin film solar cell has enhanced to 24%. More than 500 papers on CZTS have been available and the greater part of these converses the preparation of CZTS thin films by diverse methods. Until now, many physical and chemical methods have been engaged for preparing CZTS thin films. Amongst them, spray pyrolysis is a flexible deposition technique. Spray pyrolysis is a simple deposition technique that finds use in widespread areas of thin film deposition research. This method is appropriate for depositing good quality films with low cost, clean deposition, and simplicity and flexibility in the manufacturing design. This script, reviews the synthesis of CZTS semiconductor thin films deposited by spray pyrolysis. This analysis initiates with a portrayal of the spray pyrolysis system, and then establish the CZTS and preparation of the CZTS precursor for coating. A review of spray pyrolysis of CZTS thin films are discussed in detail. To conclude, we present perspectives for advancements in spray pyrolysis for a CZTS based solar cell absorber layer.


Sign in / Sign up

Export Citation Format

Share Document