scholarly journals Immunomodulatory Activity of Electrospun Polyhydroxyalkanoate Fiber Scaffolds Incorporating Olive Leaf Extract

2021 ◽  
Vol 11 (9) ◽  
pp. 4006
Author(s):  
Jose Gustavo De la Ossa ◽  
Alessandra Fusco ◽  
Bahareh Azimi ◽  
Jasmine Esposito Salsano ◽  
Maria Digiacomo ◽  
...  

Olive tree is a well-known source of polyphenols. We prepared an olive leaf extract (OLE) and characterized it via high performance liquid chromatography (HPLC) analysis. OLE was blended with different polyhydroxyalkanoates (PHAs), namely, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) and polyhydroxybutyrate/poly(hydroxyoctanoate-co-hydroxydecanoate) (PHB/PHOHD), to produce fiber meshes via electrospinning: OLE/PHBV and OLE/ (PHB/PHOHD), respectively. An 80–90% (w/w%) release of the main polyphenols from the OLE/PHA fibers occurred in 24 h, with a burst release in the first 30 min. OLE and the produced fiber meshes were assayed using human dermal keratinocytes (HaCaT cells) to evaluate the expression of a panel of cytokines involved in the inflammatory process and innate immune response, such as the antimicrobial peptide human beta defensin 2 (HBD-2). Fibers containing OLE were able to decrease the expression of the pro-inflammatory cytokines at 6 h up to 24 h. All the PHA fibers allowed an early downregulation of the pro-inflammatory cytokines in 6 h, which is suggestive of a strong anti-inflammatory activity exerted by PHA fibers. Differently from pure OLE, PHB/PHOHD fibers (both with and without OLE) upregulated the expression of HBD-2. Our results showed that PHA fiber meshes are suitable in decreasing pro-inflammatory cytokines and the incorporation of OLE may enable indirect antibacterial properties, which is essential in wound healing and tissue regeneration.

Author(s):  
Mustafa Bayram ◽  
Semra Topuz ◽  
Cemal Kaya

Olive leaves which is one of the by-products of olive tree cultivation and olive processing industry, have been used in traditional folk medicine for centuries. In recent studies, it has been determined that olive leaf has many bioactivities and these effects have been associated with high phenolic compound content. The most dominant phenolic compound of olive leaf is oleuropein, which is the heterosidic ester of elenolic acid and 3,4-dihydroxyphenylethanol. Therefore, some studies have been carried out for extracting high value added compounds from olive leaves in recent years. Antioxidant and antimicrobial activities of crude phenolic extract and oleuropein have been investigated. Moreover, some studies have been carried out to increase the possibility of using olive leaf extract and oleuropein in food industry due to increasing suspicion of side effects and toxicity of synthetic food preservatives. In this review, it was aimed to investigate phenolic compounds of olive leaf extract, phenolic compound extraction from olive leaf as well as antioxidant, antimicrobial activity of olive leaf extract and oleuropein and possibilities of use in foods.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4069
Author(s):  
Sarah Albogami ◽  
Aziza  Hassan

Cancer is one of the most serious public health issues worldwide, ranking second only to cardiovascular diseases as a cause of death. Numerous plant extracts have extraordinary health benefits and have been used for centuries to treat a variety of ailments with few side effects. Olive leaves have a long history of medicinal and therapeutic use. In this study, the anti-cancer properties of an olive leaf extract were investigated in vitro using colorectal and prostate cancer cell lines (HT29 and PC3, respectively). A high-performance liquid chromatography analysis showed that the olive leaf extract contained a high chlorogenic acid content. Accordingly, chlorogenic acid may be related to the observed effects of the aqueous extract on cancer cells, including increased inhibition of cancer cell growth, migration, DNA fragmentation, cell cycle arrest at the S phase, reactive oxygen species (ROS) production, and altered gene expression. The effects of the extracts were greater in HT29 than in PC3 cells. These results suggest that chlorogenic acid, the main constituent in the olive extract, is a promising new anti-cancer agent. Further analyses should focus on its in vivo effects on colorectal tumor models, both alone and in combination with established agents.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Carla Marchetti ◽  
Marco Clericuzio ◽  
Barbara Borghesi ◽  
Laura Cornara ◽  
Stefania Ribulla ◽  
...  

Malignant mesothelioma is a poor prognosis cancer in urgent need of alternative therapies. Oleuropein, the major phenolic of olive tree (Olea europaeaL.), is believed to have therapeutic potentials for various diseases, including tumors. We obtained an oleuropein-enriched fraction, consisting of 60% w/w oleuropein, from olive leaves, and assessed its effects on intracellular Ca2+and cell viability in mesothelioma cells. Effects of the oleuropein-enriched fraction on Ca2+dynamics and cell viability were studied in the REN mesothelioma cell line, using fura-2 microspectrofluorimetry and MTT assay, respectively. Fura-2-loaded cells, transiently exposed to the oleuropein-enriched fraction, showed dose-dependent transient elevations of cytosolic Ca2+concentration (Ca2+i). Application of standard oleuropein and hydroxytyrosol, and of the inhibitor of low-voltage T-type Ca2+channels NNC-55-0396, suggested that the effect is mainly due to oleuropein acting through its hydroxytyrosol moiety on T-type Ca2+channels. The oleuropein-enriched fraction and standard oleuropein displayed a significant antiproliferative effect, as measured on REN cells by MTT cell viability assay, with IC50of 22 μg/mL oleuropein. Data suggest that our oleuropein-enriched fraction from olive leaf extract could have pharmacological application in malignant mesothelioma anticancer therapy, possibly by targeting T-type Ca2+channels and thereby dysregulating intracellular Ca2+dynamics.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 970 ◽  
Author(s):  
Yasuaki Kaneko ◽  
Michiya Sano ◽  
Kotomi Seno ◽  
Yuka Oogaki ◽  
Hironori Takahashi ◽  
...  

The placenta is essential for pregnancy and produces both pro-inflammatory and anti-inflammatory cytokines. Excessive production of inflammatory cytokines, involving interleukin-1β (IL-1β), IL-6, and IL-8, from placental tissues is associated with pregnancy complications. Olive leaf extract has several health benefits, including anti-inflammatory functions. OleaVita is a new commercial olive leaf extract; it is hypothesized to suppress placental inflammation. In human placental tissue culture, OleaVita treatment inhibited the secretion of inflammatory cytokines and NF-κB p65 protein expression. OleaVita also suppressed toll-like receptor ligands-induced IL-1β secretion in human placental tissues. IL-1β is regulated by the NLRP3 inflammasomes, a pivotal regulator of various diseases. OleaVita significantly decreased NLRP3 and pro-IL-1β protein expression, suggesting that it has an inhibitory effect on NLRP3 inflammasome activation. Thus, OleaVita is beneficial as an inhibitor of inflammation and NLRP3 inflammasome activation, and may be used as a supplement for the treatment and prevention of inflammatory diseases.


2016 ◽  
Vol 87 (4) ◽  
pp. 444-459 ◽  
Author(s):  
Zdenka Peršin ◽  
Matej Ravber ◽  
Karin Stana Kleinschek ◽  
Željko Knez ◽  
Mojca Škerget ◽  
...  

Considering the increasing resistance of numerous bacteria to antibiotics, a novel wound dressing material was developed with naturally acquired olive leaf extract, which shows not only good antimicrobial activity, but also very good antioxidant activity. Besides that, the leaves are treated as waste in agriculture, giving an impact on waste management. An environmentally friendly procedure, electrospinning, was used for the first time to prepare polysaccharide nanofibrous mats with incorporated olive leaf extract, with the unique property of releasing the active phenolic components in a prolonged manner over 24 hours. The developed electrospun mats were characterized using scanning electron microscopy, high-performance liquid chromatography and ultraviolet-visible spectroscopy for determination of free radical scavenging activity by 2,2-diphenyl-1-picrylhydrazyl, antimicrobial testing and release kinetics. Antimicrobial tests have shown that electrospun mats with olive leaf extract achieve reduction towards the tested microorganisms: Staphylococcus aureus (G+), Escherichia coli (G-), Enterococcus faecalis (G+) and Pseudomonas aeruginosa (G-), while the high antioxidant activity of olive leaf extract was preserved during the electrospinning procedure. Release of olive leaf extract from electrospun mats was mathematically modeled, and the release kinetics evaluation indicates the appropriateness of the Korsmeyer–Peppas model for fitting the obtained results of release ability due to erosion of polysaccharide nanofiber mats.


2013 ◽  
Vol 67 (5-6) ◽  
pp. 303-315
Author(s):  
Zoran Miloradovic ◽  
Maja Gvozdenov ◽  
Djurdjica Jovovic ◽  
Nevena Mihailovic-Stanojevic ◽  
Milan Ivanov ◽  
...  

Hypertension is one of the main causes of cardiovascular disorders and since ancient times olive tree leaves have been used in its therapy. However the mechanisms of their atihypertensive effect have not been sufficiently explained yet. The main objective of our study was to investigate acute effect of olive tree leaves extract on haemodynamics and lipid peroxidation in rats with congenital hypertension under normal and blocked synthesis of nitric oxide. For the purpose of our research, there were used olive tree leaf extract EFLA? 943 as well as inhibitor of nitric oxide synthase enzyme L-NAME. Nitric oxide synthesis inhibition led to statistically significant increase of mean arterial pressure, reducing heart rate and cardiac output, increase of total vascular resistance and lipid peroxidation in plasma. Treatment by olive leaf extract led to decrease of mean arterial pressure, reducing the frequency and cardiac output, without change in lipid peroxidation. Olive leaf extract under blockade of nitric oxide led to decrease of mean arterial pressure, total peripheral resistance remained high, cardiac output low, and lipid peroxidation significantly increased. General conclusion is that olive leaf extract has a strong antihypertensive effect, decreases cardiac pre and after load and does not influence lipid peroxidation. Under blockade of nitric oxide synthesis, this extract keeps antihypertensive properties, but due to strong endothelial dysfunction, it is unable to regulate increased total peripheral resistance and marked lipid peroxidation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Mikami ◽  
Jimmy Kim ◽  
Jonghyuk Park ◽  
Hyowon Lee ◽  
Pongson Yaicharoen ◽  
...  

AbstractObesity is a risk factor for development of metabolic diseases and cognitive decline; therefore, obesity prevention is of paramount importance. Neuronal mitochondrial dysfunction induced by oxidative stress is an important mechanism underlying cognitive decline. Olive leaf extract contains large amounts of oleanolic acid, a transmembrane G protein-coupled receptor 5 (TGR5) agonist, and oleuropein, an antioxidant. Activation of TGR5 results in enhanced mitochondrial biogenesis, which suggests that olive leaf extract may help prevent cognitive decline through its mitochondrial and antioxidant effects. Therefore, we investigated olive leaf extract’s effects on obesity, cognitive decline, depression, and endurance exercise capacity in a mouse model. In physically inactive mice fed a high-fat diet, olive leaf extract administration suppressed increases in fat mass and body weight and prevented cognitive declines, specifically decreased working memory and depressive behaviors. Additionally, olive leaf extract increased endurance exercise capacity under atmospheric and hypoxic conditions. Our study suggests that these promising effects may be related to oleanolic acid’s improvement of mitochondrial function and oleuropein’s increase of antioxidant capacity.


Sign in / Sign up

Export Citation Format

Share Document