scholarly journals Complementary Metaresonator Sensor with Dual Notch Resonance for Evaluation of Vegetable Oils in C and X Bands

2021 ◽  
Vol 11 (12) ◽  
pp. 5734
Author(s):  
Ammar Armghan

This paper investigates the effect of complementary metaresonator for evaluation of vegetable oils in C and X bands. Tremendously increasing technology demands the exploration of complementary metaresonators for high performance in the related bands. This research probes the complementary mirror-symmetric S resonator (CMSSR) that can operate in two bands with compact size and high sensitivity features. The prime motivation behind the proposed technique is to utilize the dual notch resonance to estimate the dielectric constant of the oil under test (OUT). The proposed sensor is designed on a compact 30×25 mm2 and 1.6 mm thick FR-4 substrate. A 50 Ω microstrip transmission line is printed on one side, while a unit cell of CMSSR is etched on the other side of the substrate to achieve dual notch resonance. A Teflon container is attached to CMSSR in the ground plane to act as a pool for the OUT. According to the simulated transmission spectrum, the proposed design manifested dual notch resonance precisely at 7.21 GHz (C band) and 8.97 GHz (X band). A prototype of complementary metaresonator sensor is fabricated and tested using CEYEAR AV3672D vector network analyzer. The comparison of measured and simulated data shows that the difference between the first resonance frequency is 0.01 GHz and the second is 0.04 GHz. Furthermore, a mathematical model is developed for the complementary metaresonator sensor to evaluate dielectric constant of the OUT in terms of the relevant, resonant frequency.

2021 ◽  
Author(s):  
Feng Gao ◽  
Xiaolong Tu ◽  
Yongfang Yu ◽  
Yansha Gao ◽  
Jin Zou ◽  
...  

Abstract Herein, an efficient electrochemical sensing platform is proposed for selective and sensitive detection of nitrite on the basis of Cu@C@Zeolitic imidazolate framework-8 (Cu@C@ZIF-8) heterostructure. Core-shell Cu@C@ZIF-8 composite was synthesized by pyrolysis of Cu-metal-organic framework@ZIF-8 (Cu-MOF@ZIF-8) in Ar atmosphere on account of the difference of thermal stability between Cu-MOF and ZIF-8. For the sensing system of Cu@C@ZIF-8, ZIF-8 with proper pore size allows nitrite diffuse through the shell, while big molecules cannot, which ensures high selectivity of the sensor. On the other hand, Cu@C as electrocatalyst promotes the oxidation of nitrite, thereby resulting high sensitivity of the sensor. Accordingly, the Cu@C@ZIF-8 based sensor presents excellent performance for nitrite detection, which achieves a wide linear response range of 0.1 µM to 300.0 µM, and a low limit of detection (LOD) of 0.033 µM. In addition, the Cu@C@ZIF-8 sensor possesses excellent stability and reproducibility, and was employed to quantify nitrite in sausage samples with recoveries of 95.45-104.80%.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2016 ◽  
Author(s):  
John P Didion ◽  
Francis S Collins

A key step in the transformation of raw sequencing reads into biological insights is the trimming of adapter sequences and low-quality bases. Read trimming has been shown to increase the quality and reliability while decreasing the computational requirements of downstream analyses. Many read trimming software tools are available; however, no tool simultaneously provides the accuracy, computational efficiency, and feature set required to handle the types and volumes of data generated in modern sequencing-based experiments. Here we introduce Atropos and show that it trims reads with high sensitivity and specificity while maintaining leading-edge speed. Compared to other state-of-the-art read trimming tools, Atropos achieves a four-fold increase in trimming accuracy and a decrease in execution time of ~50% (using 16 parallel execution threads). Furthermore, Atropos maintains high accuracy even when trimming simulated data with a high rate of error. The accuracy, high performance, and broad feature set offered by Atropos makes it an appropriate choice for the pre-processing of most current-generation sequencing data sets. Atropos is open source and free software written in Python and available at https://github.com/jdidion/atropos.


2016 ◽  
Vol 26 (04) ◽  
pp. 1750068 ◽  
Author(s):  
Jaspal Singh Khinda ◽  
Malay Ranjan Tripathy ◽  
Deepak Gambhir

A low-cost multi-edged rectangular microstrip fractal antenna (RMFA) yielding a huge bandwidth of 8.62[Formula: see text]GHz has been proposed in this paper. The proposed fractal antenna design constitutes a radiation patch, fed with 50[Formula: see text][Formula: see text] microstrip line and a partial ground plane. The partial ground plane is the combination of shapes of rectangle and three-point arc. The proposed antenna is simulated as well as fabricated. The simulated results using electromagnetic solver software and measured with vector network analyzer bench MS46322A are presented and compared. The various parameters such as return loss, voltage standing wave ratio (VSWR), antenna impedance, gain, directivity, group delay and phase of [Formula: see text], radiation efficiency and patterns are presented here. The depth of return loss is improved for a wide range of frequencies. The proposed fractal antenna is further extended to linear array to improve the gain and impedance bandwidth. The simulated and measured results prove the superiority of the proposed antenna.


2015 ◽  
Vol 8 (3) ◽  
pp. 43-58
Author(s):  
Dechun Zhao ◽  
Xiaoyu Chen ◽  
Longsheng Zhang ◽  
Huiquan Zhang

This paper analyzed the type of mini-type antenna, studied the miniaturization technique based on simulation in depth, and finally designed the high-performance micro-strip antenna. The advantages of micro-strip antenna are light-weight, compact size, relatively thin thickness, and so on. However, it still needs aggressive miniaturization to satisfy the requirements of encapsulation. Techniques for miniaturization of antenna mainly include a ground plane, double-layer patch, shorting pin or wall, lossless dielectric substrate and the spiral structure. The techniques of multi-layer and shorting wall can narrow down the resonant frequency and attain bandwidth enhancement. Nonetheless, they have a complicated structure. Thus, simulation researched the influence of the surrounding tissue in detail, the position relation of shorting pin and the feed point, the substrate parameters and the structure parameters of the spiral antenna on performance. At last, through the techniques of the shorting pin, high permittivity substrate and the spiral shape, two Archimedean micro-strip patch antennas were developed for wireless capsule endoscope. The antenna has the bandwidth of about 300 MHz, the minimum voltage standing-wave ratio of 1.14:1, and the diameter of 8.3 mm. Therefore, the antenna can offer excellent performance for transmitting image data.


Frequenz ◽  
2017 ◽  
Vol 72 (1-2) ◽  
Author(s):  
Hao Zhang ◽  
Wei Kang ◽  
Wen Wu

AbstractIn this paper, a miniaturized diplexer designed with two novel one-third-mode substrate integrated resonator (OTMSIR) filters has been presented. The one-third triangular resonator cavity with two transmission zeros (TZs) and two transmission poles is investigated. TZs are implemented by taking cross couplings of lower order modes in this design. The diplexer is then obtained by integrating two different sizes of OTMSIR filters with a common T-junction structure. A X-band diplexer operating at 10 GHz and 11.5 GHz is designed on a substrate with a dielectric constant of 3.55 to verify the above design concept. This novel structure features more compact size, better transmission performance, higher out of band rejection and easier integration compared with other circuits. A good agreement is obtained between the simulations and the measured results.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 125
Author(s):  
Shubin Yan ◽  
Haoran Shi ◽  
Xiaoyu Yang ◽  
Jing Guo ◽  
Wenchang Wu ◽  
...  

Due to their compact size and high sensitivity, plasmonic sensors have become a hot topic in the sensing field. A nanosensor structure, comprising the metal–insulator–metal (MIM) waveguide with a stub and a horizontal B-Type cavity, is designed as a refractive index sensor. The spectral characteristics of proposed structure are analyzed via the finite element method (FEM). The results show that there is a sharp Fano resonance profile, which is excited by a coupling between the MIM waveguide and the horizontal B-Type cavity. The normalized HZ field is affected by the difference value between the outer radii R1 and R2 of the semi-circle of the horizontal B-Type cavity greatly. The influence of every element of the whole system on sensing properties is discussed in depth. The sensitivity of the proposed structure can obtain 1548 nm/RIU (refractive index unit) with a figure of merit of 59. The proposed structure has potential in nanophotonic sensing applications.


Author(s):  
Mohssine El Ouahabi ◽  
Aziz Dkiouak ◽  
Alia Zakriti ◽  
Mohamed Essaaidi ◽  
Hanae Elftouh

<span lang="EN-US">A compact design of ultra-wideband (UWB) antenna with dual band-notched characteristics based on split-ring resonators (SRR) are investigated in this paper. The wider impedance bandwidth (from 2.73 to 11.34 GHz) is obtained by using two symmetrical slits in the radiating patch and another slit in the partial ground plane. The dual band-notch rejection at WLAN and X-band downlink satellite communication system are obtained by inserting a modified U-strip on the radiating patch at 5.5 GHz and embedding a pair of rectangular SRRs on both sides of the microstrip feed line at 7.5 GHz, respectively. The proposed antenna is simulated and tested using CST MWS high frequency simulator and exhibits the advantages of compact size, simple design and each notched frequency band can be controlled independently by using the SRR geometrical parameters. Therefore, the parametric study is carried out to understand the mutual coupling between the dual band-notched elements. To validate simulation results of our design, a prototype is fabricated and good agreement is achieved between measurement and simulation. Furthermore, a radiation patterns, satisfactory gain, current distribution and VSWR result at the notched frequencies make the proposed antenna a suitable candidate for practical UWB applications.</span>


2017 ◽  
Author(s):  
John P Didion ◽  
Marcel Martin ◽  
Francis S Collins

A key step in the transformation of raw sequencing reads into biological insights is the trimming of adapter sequences and low-quality bases. Read trimming has been shown to increase the quality and reliability while decreasing the computational requirements of downstream analyses. Many read trimming software tools are available; however, no tool simultaneously provides the accuracy, computational efficiency, and feature set required to handle the types and volumes of data generated in modern sequencing-based experiments. Here we introduce Atropos and show that it trims reads with high sensitivity and specificity while maintaining leading-edge speed. Compared to other state-of-the-art read trimming tools, Atropos achieves a four-fold increase in trimming accuracy and a decrease in execution time of ~50% (using 16 parallel execution threads). Furthermore, Atropos maintains high accuracy even when trimming simulated data with a high rate of error. The accuracy, high performance, and broad feature set offered by Atropos makes it an appropriate choice for the pre-processing of most current-generation sequencing data sets. Atropos is open source and free software written in Python and available at https://github.com/jdidion/atropos.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 651 ◽  
Author(s):  
Mohamed M. Mansour ◽  
Haruichi Kanaya

Radio frequency (RF) power harvesting allows wireless power delivery concurrently to several remote RF devices. This manuscript presents the implementation of a compact, reliable, effective, and flexible energy harvesting (EH) rectenna design. It integrates a simple rectifier circuit with a circularly polarized one-sided slot dipole antenna at 2.45 GHz Industrial, Scientific, Medical (ISM) frequency band for wireless charging operation at low incident power densities, from 1 to 95 μ W/cm 2 . The rectenna structure is printed on a single layer, low cost, commercial FR4 substrate. The integration of the rectifier and antenna produces a low-profile and high performance circularly polarized rectenna. In order to maximize the system efficiency, the matching circuit introduced between the rectifier and antenna is optimized for a minimum number of discrete components and it is constructed using multiple of L-slot defects in the ground plane. For a given input power of − 6 dBm intercepted by the circularly polarized antenna with 3 dBi gain, the peak RF-DC (radio frequency-direct current) conversion efficiency is 59.5 % . The rectenna dimensions are 41 × 35.5 mm 2 . It is demonstrated that the output power from the proposed rectenna is higher than the other published designs with a similar antenna size under the same ambient condition. Thanks to its compact size, the proposed rectenna finds a range of potential applications for wireless energy charging.


Sign in / Sign up

Export Citation Format

Share Document