scholarly journals Insight in the Crystallization Kinetics of AlPO4-11 Molecular Sieve Using Di-Isopropylamine as Template

2021 ◽  
Vol 11 (14) ◽  
pp. 6544
Author(s):  
Renilson O. Mapele ◽  
Antonio O. S. Silva ◽  
Marcelo J. B. Souza ◽  
Anne M. G. Pedrosa ◽  
Ana C. F. Coriolano ◽  
...  

The hydrothermal synthesis of aluminophosphate molecular sieve type AlPO4-11 was processed from chemicals containing psueudobohemite, 85% phosphoric acid, water, and di-isopropylamine as templating agent. The crystallization of the samples was studied by taking samples in times from 2 to 74 h. The obtained white powder products were characterized by X-ray diffraction patterns (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TG) and differential scanning calorimetry (DTG) data and pH measurement of the mother liquor. The pore volume, as determined from TG and DTG curves, was ca. 0.17 cm3g−1. The percent relative crystallinity was determined by XRD and FT-IR methods. The crystallization kinetics evidenced that the hydrothermal synthesis of AlPO4-11 exhibited in its initial phase a behavior of first order reaction with a specific velocity constant of ca. 0.25 h−1, as determined from XRD and FT-IR data. The results obtained by both X-ray diffraction and infrared spectroscopy are comparable, and FT-IR is found to be a rapid method for estimating crystallinity and structure of aluminophosphate.

Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 338 ◽  
Author(s):  
Yating Cui ◽  
Yu Zheng ◽  
Weiqing Wang

As a solid waste, kaolinite-type pyrite flotation tailings (KPFT) are a type of low-quality kaolin that contain impurities, such as iron and titanium. In this study, KPFT were calcined at 800 °C for two hours. The calcined production (CKPFT), which is mainly metakaolin, was used as the silicon and aluminum source to synthesize 4A zeolite (Na12[(AlO2)12(SiO2)12]·27H2O) via hydrothermal synthesis. The optimal hydrothermal synthesis conditions were determined from X-ray diffraction phase analysis, relative crystallinity (RC), and cation ion exchange capacity (CEC). The optimal hydrothermal synthesis conditions were determined to be a ratio of 5 g CKPFT, 6.5 g NaOH, 65 mL H2O, crystallization temperature 110 °C, and crystallization time of three hours. Under the optimal hydrothermal synthesis conditions, the RC and CEC of the synthesized 4A zeolite were 40.77% and 210.32 mg CaCO3·g−1, respectively. Further characterizations including pore size distribution, scanning electron microscopy, energy dispersive X-ray, thermogravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy were performed. The results revealed that impurities in KPFT do not affect the synthesis of 4A zeolite. The surface morphology of the synthesized 4A zeolite was composed of chamfered-edged cubes with a particle size of one to three μm that was thermally stable up to approximately 890 °C.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Shahram Mehdipour-Ataei ◽  
Leila Akbarian-Feizi

AbstractA diamine monomer containing ester, amide and ether functional groups was prepared and its polymerization reaction with different diisocyanates to give main chain poly(ester amide ether urea)s was investigated. The monomer was synthesized via reaction of terephthaloyl chloride with 4-hydroxybenzoic acid and subsequent reaction of the resulted diacid with 1,8-diamino-3,6-dioxaoctane. The polymers were characterized by FT-IR and 1H-NMR spectroscopic method and elemental analysis. The resulting polymers exhibited excellent solubility in polar solvents. Crystallinity of the resulted polymers was evaluated by wide-angle X-ray diffraction (WXRD) method, and they exhibited semi-crystalline patterns. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were in the range of 88-112 °C. The temperatures for 10% weight loss (T10) from their thermogravimetric analysis (TGA) curves were found to be in the range of 297-312 °C in air. Also the prepared polyureas showed liquid crystalline character.


2010 ◽  
Vol 428-429 ◽  
pp. 126-131
Author(s):  
Wei Zhong Lu ◽  
Chun Wei ◽  
Qui Shan Gao

Polymethylene bis(p-hydroxybenzoates) were prepared from methyl p-hydroxybenzoate and different diols by melted transesterification reaction. Three liquid crystalline polyesters were synthesized from terephthaloyl dichloride and polymethylene bis(p-hydroxybenzoates). Its structure, morphology and properties were characterized by Ubbelohde viscometer, Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC), polarized optical microscopy (POM) with a hot stage, and wide-angle X-ray diffraction (WAXD). Results indicated that the intrinsic viscosities were between 0.088 and 0.210 dL/g. Optical microscopy showed that the TLCP has a highly threaded liquid crystalline texture and a high birefringent schlieren texture character of nematic phase and has wider mesophase temperature ranges for all polyesters. DSC analysis were found that the melting point (Tm), isotropic temperature (Ti) of TLCPs decreased and the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyester. The WAXD results showed that TLCPs owned two strong diffraction peaks at 2θ near 19° and 23°.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 171
Author(s):  
Jianyou Zhang ◽  
Xuehua Xie ◽  
Lyu Zhang ◽  
Yiling Hong ◽  
Gaopeng Zhang ◽  
...  

Pre-cooked adzuki beans (Vigna angularis), which looks like dried adzuki bean, is easily cooked and preserved. This study aimed to optimize the microwave pre-cooked conditions on adzuki beans by applying the response surface methodology. The results showed that soaking time has a significant effect on the gelatinization degree of adzuki beans according to microwave time. The most suitable gelatinization and the sensory scores were obtained with a soaking time of 7.8 h, a microwave power of 830 W, and microwave time of 92 s. The pre-cooked treatment had no significant effect (p > 0.05) on the protein, free amino acid, fat and starch content of adzuki bean products. The results of SEM and polarized light microscopy showed that the surface and center of starch were damaged after microwave treatment. XRD showed that microwave pre-cooking did not change the crystal structure of starch and maintained the original order of type A structure while reducing the relative starch crystallinity. FT-IR showed that the pre-cooked treatment did not produce new structure in adzuki bean starch, but the ratio of 1047/1022 cm−1 was slightly decreased, indicating that the starch crystallization area decreased relative to the amorphous area and the relative crystallinity decreased. The results of FTIR were consistent with X-ray diffraction results. Therefore, microwaves improved the gelatinization of adzuki beans and made the pre-cooked adzuki beans more suitable.


Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 115 ◽  
Author(s):  
Deeb Abu Fara ◽  
Linda Al-Hmoud ◽  
Iyad Rashid ◽  
Babur Z. Chowdhry ◽  
Adnan Badwan

Chitin has been investigated in the context of finding new excipients suitable for direct compression, when subjected to roller compaction. Ball milling was concurrently carried out to compare effects from different energy or stress-inducing techniques. Samples of chitin powders (raw, processed, dried and humidified) were compared for variations in morphology, X-ray diffraction patterns, densities, FT-IR, flowability, compressibility and compactibility. Results confirmed the suitability of roller compaction to convert the fluffy powder of raw chitin to a bulky material with improved flow. X-ray powder diffraction studies showed that, in contrast to the high decrease in crystallinity upon ball milling, roller compaction manifested a slight deformation in the crystal lattice. Moreover, the new excipient showed high resistance to compression, due to the high compactibility of the granules formed. This was correlated to the significant extent of plastic deformation compared to the raw and ball milled forms of chitin. On the other hand, drying and humidification of raw and processed materials presented no added value to the compressibility and compactibility of the directly compressed excipient. Finally, compacted chitin showed direct compression similarity with microcrystalline cellulose when formulated with metronidazole (200 mg) without affecting the immediate drug release action of the drug.


2020 ◽  
Vol 856 ◽  
pp. 190-197
Author(s):  
Pornsit Chaiya ◽  
Thawatchai Phaechamud

Compatibility investigation was performed between magnesium stearate and acidic drug compounds (ibuprofen, indomethacin and valproic acid) and acidic pharmaceutical excipients (lactic acid and citric acid) using differential scanning calorimetry (DSC). DSC study indicated the possible incompatibility for the mixture between magnesium stearate and any compounds. Alteration in DSC thermogram was found in all mixtures. The eutectic phenomenon was found in the powder mixture of magnesium stearate and ibuprofen. In addition, the presence of melting endothermic peak of stearic acid in other powder mixtures except the mixture of magnesium stearate and indomethacin indicating breakage of salt form of magnesium stearate. This alteration could relate to the influence on physicochemical properties of drug compounds and pharmaceutical excipients which powder x-ray diffraction (PXRD) and Fourier Transform Infrared Spectroscopy (FT-IR) should be further analyzed to confirm the interactions between compounds.


2018 ◽  
Vol 89 (9) ◽  
pp. 1770-1781 ◽  
Author(s):  
Huaizhong Xu ◽  
Benedict Bauer ◽  
Masaki Yamamoto ◽  
Hideki Yamane

A facile route was proposed to fabricate core–sheath microfibers, and the relationships among processing parameters, crystalline structures and the mechanical properties were investigated. The compression molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)/poly(L-lactic acid) (PLLA) strip enhanced the spinnability of PHBH and the mechanical properties of PLLA as well. The core–sheath ratio of the fibers was determined by the prefab strip, while the PLLA sheath component did not completely cover the PHBH core component due to the weak interfacial tension between the melts of PHBH and PLLA. A rotational target was applied to collect aligned fibers, which were further drawn in a water bath. The tensile strength and the modulus of as-spun and drawn fibers increased with increasing the take-up velocities. When the take-up velocity was above 500 m/min, the jet became unstable and started to break up at the tip of the Taylor cone, decreasing the mechanical properties of the fibers. The drawing process facilitated the crystallization of PLLA and PHBH, and the tensile strength and the modulus increased linearly with the increasing the draw ratio. The crystal information displayed from wide-angle X-ray diffraction patterns and differential scanning calorimetry heating curves supported the results of the tensile tests.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 305 ◽  
Author(s):  
Yan Zhang ◽  
Hui Zhang ◽  
Fang Wang ◽  
Li-Xia Wang

The ginger essential oil/β-cyclodextrin (GEO/β-CD) composite, ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) particles and ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) microsphere were prepared with the methods of inclusion, ionic gelation and spray drying. Their properties were studied by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo-gravimetry analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The results showed that the particle size of GEO/β-CD composite was smaller than that of β-CD and GEO/β-CD/CTS particles were loose and porous, while the microsphere obtained by spray drying had certain cohesiveness and small particle size. Besides, results also indicated that β-CD/CTS could modify properties and improve the thermal stability of GEO, which would improve its application value in food and medical industries.


Sign in / Sign up

Export Citation Format

Share Document