scholarly journals Improving the Safe Operation of Platoon Lane Changing for Connected Automated Vehicles: A Novel Field-Driven Approach

2021 ◽  
Vol 11 (16) ◽  
pp. 7287
Author(s):  
Renfei Wu ◽  
Linheng Li ◽  
Wenqi Lu ◽  
Yikang Rui ◽  
Bin Ran

Connected and automated vehicles (CAVs) platoons have been widely researched because of their efficiency advantages. However, most studies mainly focus on the stability control of platoon and there is a lack of in-depth consideration of platoon lane changing. In order to make up for this vacancy, this study focused on the dynamic gap in the platoon lane changing process. First, an intra-platoon potential field of vehicles in the platoon was established by combining the repulsive force under vehicle safety and the gravity inside the platoon, which can effectively characterize the risk distribution around vehicles. Second, the platoon lane changing process was designed and critical distances of platoon vehicles under different conflict situations were analyzed. Based on this, this study proposed a critical distance model of platoon lane changing. Furthermore, we also found that the critical distances for platoon lane changing were within an interval with upper and lower bounds, which was different from the minimum distance of non-platoon vehicles. Finally, experiments were conducted and the results showed that the proposed model could effectively represent the relationship between the distance between vehicles in the platoon and the motion state of the surrounding vehicles. Moreover, the proposed method could also be applied to the lane-changing maneuver of a self-organizing platoon at a strategic level in a CAVs system.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Haijian Bai ◽  
Jianfeng Shen ◽  
Liyang Wei ◽  
Zhongxiang Feng

Considering the complexity of lane changing using automated vehicles and the frequency of turning lanes in city settings, this paper aims to generate an accelerated lane-changing trajectory using vehicle-to-vehicle collaboration (V2VC). Based on the characteristics of accelerated lane changing, we used a polynomial method and cooperative strategies for trajectory planning to establish a lane-changing model under different degrees of collaboration with the following vehicle in the target lane by considering vehicle kinematics and comfort requirements. Furthermore, considering the shortcomings of the traditional elliptical vehicle and round vehicle models, we established a rectangular vehicle model with collision boundary conditions by analysing the relationships between the possible collision points and the outline of the vehicle. Then, we established a simulation model for the accelerated lane-changing process in different environments under different degrees of collaboration. The results show that, by using V2VC, we can achieve safe accelerated lane-changing trajectories and simultaneously satisfy the requirements of vehicle kinematics and comfort control.


2001 ◽  
Vol 29 (2) ◽  
pp. 108-132 ◽  
Author(s):  
A. Ghazi Zadeh ◽  
A. Fahim

Abstract The dynamics of a vehicle's tires is a major contributor to the vehicle stability, control, and performance. A better understanding of the handling performance and lateral stability of the vehicle can be achieved by an in-depth study of the transient behavior of the tire. In this article, the transient response of the tire to a steering angle input is examined and an analytical second order tire model is proposed. This model provides a means for a better understanding of the transient behavior of the tire. The proposed model is also applied to a vehicle model and its performance is compared with a first order tire model.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


1985 ◽  
Vol 49 ◽  
Author(s):  
Martin Stutzmann ◽  
Warren B. Jackson ◽  
Chuang Chuang Tsai

AbstractThe dependence of the creation and the annealing of metastable dangling bonds in hydrogenated amorphous silicon on various material parameters will be discussed in the context of a recently proposed model. After a brief review of the kinetic behaviour governing defect creation and annealing in undoped a- Si:H, a number of special cases will be analyzed: the influence of alloying with O, N, C, and Ge, changes introduced by doping and compensation, and the role of mechanical stress. Finally, possibilities to increase the stability of a-Si:H based devices will be examined.


2016 ◽  
Vol 24 (01) ◽  
pp. 1550021 ◽  
Author(s):  
Heekyu Woo ◽  
Young S. Shin

In this paper, a new third-order approximation model for an acoustic-structure interaction problem is introduced. The new approximation model is designed to be an accurate and a stable model for predicting the response of a submerged structure. The proposed model is obtained by combining two lower order approximation models instead of using an operator matching method. The stability of this model is checked by a modal analysis. Finally, the approximation model is coupled to the spherical shell structure, and its performance is checked by a shock analysis.


2013 ◽  
Vol 859 ◽  
pp. 222-227
Author(s):  
Hong Jun Liu ◽  
Jin Hua Tan ◽  
Xue Wen Su ◽  
Hao Wu

Two typical monitoring sections are selected for obtaining the change law of the surface subsidence and the settlement after construction of soft soil foundations, and determining the reasonable unloading time. The research results show that the surface settlement rate is large during the filling stage, the rate decreases after the loading and gradually stabilized. The embankment midline settlement is larger than the settlement of the road shoulder which is concluded from the fact that the subsidence of the middle settlement plate is larger than those of the left and right plate. The surface subsidence rate is less than 5mm per month during the two month before unloading according to the data in the tables. The settlement after construction presumed from the middle plate is more significantly larger than that of left and right sides, hence, as the unloading basis of preloading drainage method in soft soil foundation treatment the settlement after construction which is calculated from the midline monitoring data of the road is appropriate. After 6 months the calculated post-construction settlements of the two sections are in the scope of the design requirement since they decrease with preloading time. The reliable basis is provided for the future design and construction of soft foundation in this area through the research results.


2000 ◽  
Author(s):  
Ohseop Song ◽  
Liviu Librescu ◽  
Nam-Heui Jeong

Abstract Within this paper problems related with the vibration and stability control of circular flexible shafts spinning about their rotational axis are addressed. Due to the occurrence, as a result of the spinning speed, of gyroscopic forces in the system, the rotating shaft can experience, in some conditions, instabilities of the same nature as any nonconservative system, namely divergence and flutter instabilities. Whereas the former instability is of a static character, the latter one is of dynamic character and the results of its occurrence are catastrophic. By including collocated sending and actuating capabilities via integration in the system of piezoelectric devices and of a feedback control law, it is shown that a dramatic enhancement of both the free dynamic response and of the stability behavior from both the divergence and flutter points of view can be achieved. This implies that via the implementation of this technology an increase of the spinning speed can be achieved without the occurrence of these instabilities. Numerical simulations documenting these findings are provided and pertinent conclusions are outlined. It is also worthy to mention that the shaft is modeled as a thin-walled cylinder made of an anisotropic material and incorporating a number of non-classical features.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Cheng Zhu ◽  
Yong Yuan ◽  
Zhongshun Chen ◽  
Zhiheng Liu ◽  
Chaofeng Yuan

The stability control of the rock surrounding recovery roadways guarantees the safety of the extraction of equipment. Roof falling and support crushing are prone to occur in double-key strata (DKS) faces in shallow seams during the extraction of equipment. Therefore, this paper focuses on the stability control of the rock surrounding DKS recovery roadways by combining field observations, theoretical analysis, and numerical simulations. First, pressure relief technology, which can effectively release the accumulated rock pressure in the roof, is introduced according to the periodic weighting characteristics of DKS roofs. A reasonable application scope and the applicable conditions for pressure relief technology are given. Considering the influence of the eroded area on the roof structure, two roof mechanics models of DKS are established. The calculation results show that the yield load of the support in the eroded area is low. A scheme for strengthening the support with individual hydraulic props is proposed, and then, the support design of the recovery roadway is improved based on the time effects of fracture development. The width of the recovery roadway and supporting parameters is redesigned according to engineering experience. Finally, constitutive models of the support and compacted rock mass in the gob are developed with FLAC3D software to simulate the failure characteristics of the surrounding rock during pressure relief and equipment extraction. The surrounding rock control effects of two support designs and three extraction schemes are comprehensively evaluated. The results show that the surrounding rock control effect of Scheme 1, which combines improved support design and the bidirectional extraction of equipment, is the best. Engineering application results show that Scheme 1 realizes the safe extraction of equipment. The research results can provide a reference and experience for use in the stability control of rock surrounding recovery roadways in shallow seams.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550054
Author(s):  
Jinliang Cao ◽  
Zhongke Shi ◽  
Jie Zhou

An extended optimal velocity (OV) difference model is proposed in a cooperative driving system by considering multiple OV differences. The stability condition of the proposed model is obtained by applying the linear stability theory. The results show that the increase in number of cars that precede and their OV differences lead to the more stable traffic flow. The Burgers, Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations are derived to describe the density waves in the stable, metastable and unstable regions, respectively. To verify these theoretical results, the numerical simulation is carried out. The theoretical and numerical results show that the stabilization of traffic flow is enhanced by considering multiple OV differences. The traffic jams can be suppressed by taking more information of cars ahead.


Sign in / Sign up

Export Citation Format

Share Document