scholarly journals High Strain Rate Properties of Various Forms of Ti6Al4V(ELI) Produced by Direct Metal Laser Sintering

2021 ◽  
Vol 11 (17) ◽  
pp. 8005
Author(s):  
Amos Muiruri ◽  
Maina Maringa ◽  
Willie du Preez

For analysis of engineering structural materials to withstand harsh environmental conditions, accurate knowledge of properties such as flow stress and failure over conditions of high strain rate and temperature plays an essential role. Such properties of additively manufactured Ti6Al4V(ELI) are not adequately studied. This paper documents an investigation of the high strain rate and temperature properties of different forms of heat-treated Ti6Al4V(ELI) samples produced by the direct metal laser sintering (DMLS). The microstructure and texture of the heat-treated samples were analysed using a scanning electron microscope (SEM) equipped with an electron backscatter diffraction detector for electron backscatter diffraction (EBSD) analysis. The split Hopkinson pressure bar (SHPB) equipment was used to carry out tests at strain rates of 750, 1500 and 2450 s−1, and temperatures of 25, 200 and 500 °C. The heat-treated samples of DMLS Ti6Al4V(ELI) alloys tested here were found to be sensitive to strain rate and temperature. At most strain rates and temperatures, the samples with finer microstructure exhibited higher dynamic strength and lower strain, while the dynamic strength and strain were lower and higher, respectively, for samples with coarse microstructure. The cut surfaces of the samples tested were characterised by a network of well-formed adiabatic shear bands (ASBs) with cracks propagating along them. The thickness of these ASBs varied with the strain rate, temperature, and various alloy forms.

2020 ◽  
Vol 321 ◽  
pp. 13003
Author(s):  
Zimin Lu ◽  
Jiao Luo ◽  
Miaoquan Li

Effect of strain rate on α-lath thickness of TC17 alloy with a basketweave microstructure was studied in the present work. For this purpose, this alloy was deformed in the β phase region and subsequently soluted and aged in α+β phase region. Moreover, optical micrograph (OM) and electron backscatter diffraction (EBSD) were applied to analyze the change of lath thickness at different strain rates. The result showed that α-lath thickness increased with increasing strain rate. This phenomenon was possibly attributed to the higher degree of variant selection (DVS) at higher strain rate (0.1 s-1). The higher DVS was beneficial for the formation of parallel α-lath colonies during cooling after deformation. And, these parallel α-lath colonies would more easily grow up and coarsen during subsequent heat treatment. Therefore, α-lath at higher strain rate is more thick.


2021 ◽  
Vol 21 (6) ◽  
pp. 3274-3282
Author(s):  
Tong Shen ◽  
Caihe Fan ◽  
Ling Ou ◽  
Zeyi Hu ◽  
Jianjun Yang ◽  
...  

Spray-forming Al–Cu–Mg alloy was compressed to 70% deformation at 300–450 °C and strain rates of 0.01–10.00 s−1 on a Gleeble-3180 system. The microstructures of the hot deformed, sprayforming, nano-sized Al–Cu–Mg alloys were studied through electron backscatter diffraction. Constitutive equation and parameter Z were established to describe the deformation behavior of the alloy at high temperature, and the Q value was 155.67 KJ·mol−1. 3D power dissipation and processing maps were analyzed under strain values of 0.3, 0.6, 0.9, and 1.2. When the strain was increased from 0.6 to 0.9, the processing performance changed remarkably. Dynamic recovery occurred at low temperature and high strain rate, whereas dynamic recrystallization took place at increased temperature and low strain rate. The region in 400–450 °C and 0.01 s−1–0.08 s−1 exhibited an improved processing performance.


2011 ◽  
Vol 82 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Xuehui Gan ◽  
Jianhua Yan ◽  
Bohong Gu ◽  
Baozhong Sun

The uniaxial tensile properties of 4-step 3D braided E-glass/epoxy composites under quasi-static and high-strain rate loadings have been investigated to evaluate the tensile failure mode at different strain rates. The uniaxial tensile properties at high strain rates from 800/s to 2100/s were tested using the split Hopkinson tension bar (SHTB) technique. The tensile properties at quasi-static strain rate were also tested and compared with those in high strain rates. Z-transform theory is applied to 3D braided composites to characterize the system dynamic behaviors in frequency domain. The frequency responses and the stability of 3D braided composites under quasi-static and high-strain rate compression have been analyzed and discussed in the Z-transform domain. The results indicate that the stress-strain curves are rate sensitive, and tensile modulus, maximum tensile stress and corresponding tensile strain are also sensitive to the strain rate. The tensile modulus, maximum tensile stress of the 3D braided composites are linearly increased with the strain rate. With increasing of the strain rate (from 0.001/s to 2100/s), the tensile failure of the 3D braided composite specimens has a tendency of transition from ductile failure to brittle failure. The magnitude response and phase response is very different in quasi-static loading with that in high-strain rate loading. The 3D braided composite system is more stable at high strain rate than quasi-static loading.


2012 ◽  
Vol 562-564 ◽  
pp. 688-692 ◽  
Author(s):  
Deng Yue Sun ◽  
Jing Li ◽  
Fu Cheng Zhang ◽  
Feng Chao Liu ◽  
Ming Zhang

The influence of the strain rate on the plastic deformation of the metals was significant during the high strain rate of loading. However, it was very difficult to obtain high strain rate data (≥ 104 s-1) by experimental techniques. Therefore, the finite element method and iterative method were employed in this study. Numerical simulation was used to characterise the deformation behavior of Hadfield steel during explosion treatment. Base on experimental data, a modified Johnson-Cook equation for Hadfield steel under various strain rate was fitted. The development of two field variables was quantified during explosion hardening: equivalent stress and strain rates.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 510 ◽  
Author(s):  
Zhi Jia ◽  
Zexi Gao ◽  
Jinjin Ji ◽  
Dexue Liu ◽  
Tingbiao Guo ◽  
...  

High-temperature compression and electron backscatter diffraction (EBSD) techniques were used in a systematic investigation of the dynamic recrystallization (DRX) behavior and texture evolution of the Inconel625 alloy. The true stress–true strain curves and the constitutive equation of Inconel625 were obtained at temperatures ranging from 900 to 1200 °C and strain rates of 10, 1, 0.1, and 0.01 s−1. The adiabatic heating effect was observed during the hot compression process. At a high strain rate, as the temperature increased, the grains initially refined and then grew, and the proportion of high-angle grain boundaries increased. The volume fraction of the dynamic recrystallization increased. Most of the grains were randomly distributed and the proportion of recrystallized texture components first increased and then decreased. Complete dynamic recrystallization occurred at 1100 °C, where the recrystallized volume fraction and the random distribution ratios of grains reached a maximum. This study indicated that the dynamic recrystallization mechanism of the Inconel625 alloy at a high strain rate included continuous dynamic recrystallization with subgrain merging and rotation, and discontinuous dynamic recrystallization with bulging grain boundary induced by twinning. The latter mechanism was less dominant.


2019 ◽  
Vol 822 ◽  
pp. 66-71
Author(s):  
Anton Naumov ◽  
Anatolii Borisov ◽  
Anastasiya Y. Doroshchenkova

The present research describes the comparison of numerical and physical simulation of hot high strain rate torsion tests for Al-based alloys in order to clarify the accuracy of calculations using basic grades of materials in Deform-3DTM software. A comparative visual analysis of the results is presented. Obtained data on the distribution of temperatures, strains, stresses and strain rates during the torsion test are discussed.


2012 ◽  
Vol 735 ◽  
pp. 271-277 ◽  
Author(s):  
Tomoyuki Kudo ◽  
Akira Goto ◽  
Kazuya Saito

Blow forming accompanied with superplasticity makes possible the forming of complex parts, which cannot be formed by cold press forming. The conventional superplastic AA5083 alloy ‘ALNOVI-1’ developed by the Furukawa-Sky Aluminum Corp. shows high superplasticity because of its fine grain and is widely used for blow forming. However, for mass production of components, an Al-Mg alloy with finer-sized grains is needed. In this research, the newly developed high Mn version of the Al-Mg alloy ‘ALNOVI-U’ is used, and this material possesses grains finer than those of the conventional AA5083 alloy. The effects of finer grain size on the blow formability at high strain rates over 10-2/s and the properties of the resulting moldings were studied.


Author(s):  
Yuvraj Singh ◽  
Anirudh Udupa ◽  
Srinivasan Chandrasekar ◽  
Ganesh Subbarayan

Abstract Studies on medium to high strain-rate characterization (≥ 0.1s−1) of lead-free solder are relatively few, primarily due to the lack of available methods for testing. Prior work in literature uses Split Hopkinson Bar (SPHB) experiments for high strain-rate characterization (≥ 300s−1) [1,2], while a modified micro-scale tester is used for medium strain-rate characterization (0.005s−1 to 300s−1) [3] and an impact hammer test setup for testing in a strain-rate regime from 1s−1 to 100s−1 [4]. However, there is still limited data in strain-rate regimes of relevance, specifically for drop shock applications. In this paper, we present orthogonal metal cutting as a novel method to characterize lead-free solder alloys. Experiments are carried out using a wedgelike tool that cuts through a work piece at a fixed depth and rake angle while maintaining a constant cutting velocity. These experiments are conducted at room temperature on Sn1.0Ag0.5Cu bulk test specimens with strain-rates varying from 0.32 to 48s−1. The range of strain-rates is only limited by the ball screw driven slide allowing higher strain-rates if needed. The strains and strain-rates are captured through Particle Image Velocimetry (PIV) using sequential images taken from a high-speed camera just ahead of the cutting tool. The PIV enables non-contact recording of high strain-rate deformations, while the dynamometer on the cutting head allows one to capture the forces exerted during the cutting process. Results for the stress-strain response obtained through the experiments are compared to prior work for validation. Orthogonal metal cutting is shown to be a potentially attractive method for characterization of solder at higher strain-rates.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 653
Author(s):  
Amos Muiruri ◽  
Maina Maringa ◽  
Willie du Preez ◽  
Leonard Masu

A study was undertaken on the compressive high strain rate properties and deformation behaviour of Direct Metal Laser-Sintered (DMLS) Ti6Al4V (ELI) parts in two separate forms: as-built (AB) and stress relieved (SR). The high strain rate compression tests were carried out using a Split Hopkinson Pressure Bar test system at ambient temperature. The average plastic strain rates attained by the system were 400 s−1 and 700 s−1. Comparative analyses of the performance (flow stresses and fracture strains) of AB and SR specimens were carried out based on the results obtained at these two plastic strain rates. Microstructural analyses were performed to study the failure mechanisms of the deformed specimens and fracture surfaces. Vickers microhardness test values were obtained before and after high strain rate compression testing. The results obtained in both cases showed the strain rate sensitivity of the stress-relieved samples to be higher in comparison to those of as-built ones, at the same value of true strain.


Sign in / Sign up

Export Citation Format

Share Document