scholarly journals Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute

2021 ◽  
Vol 11 (18) ◽  
pp. 8570
Author(s):  
Rodica Vârban ◽  
Ioana Crișan ◽  
Dan Vârban ◽  
Andreea Ona ◽  
Loredana Olar ◽  
...  

Plant fibers are sustainable sources of materials for many industries, and can be obtained from a variety of plants. Cellulose is the main constituent of plant-based fibers, and its properties give the characteristics of the fibers obtained. Detailed characterization of cellulosic fibers is often performed after lengthy extraction procedures, while fast screening might bring the benefit of quick qualitative assessment of unprocessed stems. The aim of this research was to define some marker spectral regions that could serve for fast, preliminary qualitative characterization of unprocessed stems from some textile plants through a practical and minimally invasive method without lengthy extraction procedures. This could serve as a screening method for sorting raw materials by providing an accurate overall fingerprint of chemical composition. For this purpose, we conducted comparative Fourier Transform Infrared Spectroscopy (FT-IR) prospecting for quality markers in stems of flax (Linum usitatissimum L.), velvet leaf (Abutilon theophrasti Medik.), hemp (Cannabis sativa L.) and jute (Corchorus olitorius L.). Analysis confirmed the presence of major components in the stems of the studied plants. Fingerprint regions for cellulose signals were attributed to bands at 1420–1428 cm−1 assigned to the crystalline region and 896–898 cm−1 assigned to the amorphous region of cellulose. The optimization of characterization methods for raw materials is important and can find immediate practical applications.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


MRS Advances ◽  
2018 ◽  
Vol 4 (07) ◽  
pp. 377-384 ◽  
Author(s):  
DaNan Yea ◽  
SeonHui Jo ◽  
JongChoo Lim

ABSTRACTIn this study, 3 types of zwitterionic phospholipid biosurfactants LDP(S), CDP(S) and CTDP(S) were prepared from 3 different raw materials such as rapeseed oil, coconut oil and cottonseed oil respectively. The structure of the resulting phospholipid biosurfactants was elucidated by FT-IR, 1H NMR and 13C NMR spectroscopies and their interfacial properties have been examined such as CMC, static surface tension, wetting property, solution stability, and foam property. Interfacial property measurement and prescription test in cosmetic formulation prepared with the newly synthesized biosurfactants revealed that CDP(S) biosurfactant possesses excellent mildness and superior interfacial properties, indicating the potential applicability in cosmetic product formulations.


2018 ◽  
Vol 11 (3) ◽  
pp. 1097-1113 ◽  
Author(s):  
M. N. Mohammed ◽  
A. E. Atabani ◽  
Gediz Uguz ◽  
Chyi-How Lay ◽  
Gopalakrishnan Kumar ◽  
...  

2020 ◽  
Vol 42 (6) ◽  
pp. 919-919
Author(s):  
Hafiz Muhammad Arshad Hafiz Muhammad Arshad ◽  
Shazia Khurshid Shazia Khurshid ◽  
Shahzad Sharif Shahzad Sharif ◽  
Muhammad Ali Muhammad Ali ◽  
Muhammad Dilshad Muhammad Dilshad ◽  
...  

Amongst organo-metallic frameworks (OMFs), the metallic framework having Zirconium metal indicate fascinating structural properties and excellent stability. Such organo-metallic frameworks (OMFs) function as a potential material for practical application. Even though these particular organo-metallic frameworks are in the early developmental stage but considerable advancements have been carried out recently. We studied the characterization of zirconium-based organo-metallic frameworks. We built Zr-based OMFs by four different synthetic ways. Initially, upgraded preparation under green and commercially feasible conditions has been carried out by modifying Zr-OMFs. Zirconium based OMFs having different structures are then classified and explained based on various organic ligands and zirconium-based secondary building units. We have synthesized the zirconium metal complexes; they have been characterized on the bases of FT-IR and CHNS analyzer. FT-IR results show binding of metal with the Benzene-1, 4-dicarboxylic acid [C6H4 (COOH) 2]. Zirconium metal can bind with the organic substances for the construction of a variety of complexes. From my research work, it is concluded that zirconium metal forms a polymeric complex with terephthalic acid. In which oxygen atoms of Terephthalic acid form bridging structure with the zirconium metal. Our study based on a particular type of OMF is likely expected to present guidance for in-depth exploration of OMFs towards practical applications. It is concluded that the metal-organic frameworks (MOFs) of zirconium metal have many applications in the field of chemistry, biology and other numerous fields of science


2011 ◽  
Vol 66-68 ◽  
pp. 65-69
Author(s):  
Long Feng Li ◽  
Yuan Gao ◽  
Mao Lin Zhang

Ca-Mg-Al hydrotalcite-like compounds (CaMgAl-HTLcs) were synthesized by a hydrothermal method, and characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and differential thermal analysis (DTA) techniques. The effects of the medium pH value, the molar ratio of the raw materials, the reaction temperature and the reaction time on the structure of CaMgAl-HTLcs were studied. The results showed that increasing treatment temperature and reaction time could improve the crystallinity and monodispersity of hydrotalcite-like compound particles. And well-defined CaMgAl-HTLcs could be prepared at a pH value of 10~11 with n(Zn+Mg+Ca):n(Al) =2. The products synthesized were applied to PVC to improve the thermal stability of PVC.


2011 ◽  
Vol 287-290 ◽  
pp. 2356-2359
Author(s):  
Juan Yang ◽  
Chuan Liang Zang ◽  
Lei Sun ◽  
Nan Zhao ◽  
Ya Zhou Zhou

Large area graphene oxide (GO) film was prepared by vacuum filtration method through a membrane with a pore size of 25 nm, using GO sheets suspension as raw materials. The film was thermal treated in Ar/H2 atmosphere at 600°C to make the film electrical conductive. The structure and morphology of the obtained film were investigated by XRD, Raman, FT-IR and SEM. Results showed that most oxygen-containing functional groups in GO film were reduced during the thermal annealing process. The obtained reduced film showed excellent electrical conductivity and the average sheet resistance of the reduced film was 11.3 Ω□-1.


2013 ◽  
Vol 662 ◽  
pp. 481-484
Author(s):  
Zhi Liang Jin ◽  
Xu Jing ◽  
Yuan Hong ◽  
Xue Ying Nai ◽  
Li Wu

Being a new whisker products with high performance to price ratio, magnesium borate whiskers with a length of 10 - 50μm and a diameter of 0.5 - 2μm were prepared by molten salt and characterized by XRD, FT - IR, SEM and chemical titration. The experiments show that the synthesis conditions are as follows: raw materials ratio: Mg:B:flux =1:11.05:1-3.5(mol); reaction temperature: 800 - 950°C;reaction time:6 - 10hours; flux: NaCl、KCl or NaOH.


2017 ◽  
Vol 748 ◽  
pp. 413-417
Author(s):  
Chun Yu Long ◽  
Fang Fang Peng ◽  
Min Min Jin ◽  
Pei Song Tang ◽  
Hai Feng Chen

Using Pr (NO3)3, butyl titanate, ethylene glycol and citric acid as main raw materials, praseodymium titanate (Pr2Ti2O7) was prepared by the sol-gel process. The samples were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), thermal gravity-differential thermal analysis (TG-DTA), diffuse-reflection spectra (DRS) and Fourier transform infrared (FT-IR). The effect of different calcination temperature and illumination time on the photocatalytic properties of Pr2Ti2O7 was investigated. It was found that the single phase Pr2Ti2O7 could be obtained through sol-gel process and calcination at 1000 °C. The Pr2Ti2O7 samples calcination at 1000 °C were uniform , and the resulting product had a particle size of 200 nm and an optical band gap of 3.26 eV. Under ultraviolet light, the degradation of methyl orange arrived to 80.11% after 180 min of photocatalytic reaction. The Pr2Ti2O7 samples showed good photocatalytic activity for decomposition of methyl orange.


2012 ◽  
Vol 151 ◽  
pp. 392-395 ◽  
Author(s):  
Xiao Hui Gao ◽  
Yu Feng Li ◽  
Hong Chao Wang

Polyacrylate latex containing fluorine and silicon was successfully synthesized by semi-continuous seed emulsion polymerization, using organic silicon(OSi) monomer, fluorocarbon(FC), methacrylic acid(MAA), and butyl acrylate(BA) as raw materials. Transmission electron microscope(TEM) characterization indicated that the latex particles were form uniform analogous core-shell structure. Dynamic light scattering(DLS) show a narrow size distribution. The results of X-ray photoelectron spectroscopy(XPS) revealed the fluorine and silicon transfer to the film-air interface. The reaction was evaluated using fourier transform infrared(FT-IR) spectrum. The thermal stability of the latex films which analysed by thermogravimetric(TG) was improved due to the join of OSi and FC.


1998 ◽  
Vol 4 (S2) ◽  
pp. 834-835
Author(s):  
Gisela Buschle-Diller

Plant fibers such as cotton, hemp and flax have been cultivated for textile purposes for thousands of years. These natural fibers play an important role in daily life as apparel fibers since they provide unique comfort properties unsurpassed by synthetic fibers. However, their use is not limited to the apparel sector. In recent years the market share of consumer textiles and industrial products made from all kinds of natural fibers has tremendously increased as they present a valuable source of renewable raw materials. Investigating their surface features by microscopic techniques is important to control the performance of the desired end-product. Processing steps involving heat, light or exposure to chemicals might have a significant impact on the specific surface properties of a fiber whether or not this was originally intended. Scanning electron microscopy is therefore a very useful tool for the characterization of textile products to determine the effectiveness and eventual resulting damage from physical or chemical treatments.


Sign in / Sign up

Export Citation Format

Share Document