scholarly journals Mechanical Performance of Concrete Made with the Addition of Recycled Macro Plastic Fibres

2021 ◽  
Vol 11 (21) ◽  
pp. 9862
Author(s):  
Pietro A. Vaccaro ◽  
Adela P. Galvín ◽  
Jesús Ayuso ◽  
Auxi Barbudo ◽  
Antonio López-Uceda

For many decades, researchers have been working on finding innovative and sustainable solutions to address the enormous quantities of plastic waste that are produced every year which, after being collected, are transformed into energy, recycled, or sent to landfills. Giving a second life to plastic waste as a material to be incorporated, in the form of macro-fibres, into concrete, could be one such solution. The purpose of this study was to analyse the mechanical and physical behaviour of the hardened concrete reinforced with macro plastic fibres (RPFs) obtained from food packaging waste (FPW) discarded during the packaging phase. By varying the quantity of macro-fibres used, physical and mechanical properties such as compressive strength, modulus of elasticity, flexural strength, and toughness were evaluated. It was observed that, although the presence of macro plastic fibres reduced the mechanical resistance capacity compared to that of traditional concrete, their contribution proved to be of some importance in terms of toughness, bringing an improvement in the post-crack resistance of the composite material. This innovative mixture provides a further impulse to the circular economy.

2021 ◽  
pp. 073168442110140
Author(s):  
Hossein Ramezani-Dana ◽  
Moussa Gomina ◽  
Joël Bréard ◽  
Gilles Orange

In this work, we examine the relationships between the microstructure and the mechanical properties of glass fiber–reinforced polyamide 6,6 composite materials ( V f = 54%). These materials made by thermocompression incorporate different grades of high fluidity polyamide-based polymers and two types of quasi-UD glass fiber reinforcement. One is a classic commercial fabric, while the other specially designed and manufactured incorporates weaker tex glass yarns (the spacer) to increase the planar permeability of the preform. The effects of the viscosity of the polymers and their composition on the wettability of the reinforcements were analyzed by scanning electron microscopy observations of the microstructure. The respective influences of the polymers and the spacer on the mechanical performance were determined by uniaxial tensile and compression tests in the directions parallel and transverse to the warp yarns. Not only does the spacer enhance permeability but it also improves physical and mechanical properties: tensile longitudinal Young’s modulus increased from 38.2 GPa to 42.9 GPa (13% growth), tensile strength increased from 618.9 MPa to 697 MPa (3% growth), and decrease in ultimate strain from 1.8% to 1.7% (5% reduction). The correlation of these results with the damage observed post mortem confirms those acquired from analyses of the microstructure of composites and the rheological behaviors of polymers.


2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2021 ◽  
Vol 25 (109) ◽  
pp. 88-97
Author(s):  
Carlos Magno Chavarry Vallejos ◽  
Liliana Janet Chavarría Reyes ◽  
Xavier Antonio Laos Laura ◽  
Andrés Avelino Valencia Gutiérrez ◽  
Enriqueta Pereyra Salardi ◽  
...  

El presente artículo tiene como objetivo determinar la influencia de la adición del dióxido de titanio (TiO2) en el mortero de cemento Pórtland Tipo I. La investigación es descriptiva, correlacional, explicativo, con diseño experimental, longitudinal, prospectivo y estudio de cohorte. Se elaboró una mezcla patrón y tres mezclas de mortero con 5%, 7.5% y 10% de contenido de TiO2 como reemplazo del volumen de cemento para las propiedades autolimpiantes se realizó el ensayo de rodamina e intemperismo. La incorporación de dióxido de titanio disminuyó la resistencia a la compresión, incrementó la fluidez y tasa de absorción de agua; la prueba de rodamina dio que el mortero sin actividad fotocatalítico no contenía TiO2 porque no cumple con los factores de fotodegradación R4 y R26. Mediante la exposición de paneles al intemperismo favoreciendo la propiedad autolimpiante de los morteros con adición de TiO2 (5%). Palabras Clave: Actividad foto catalítico, dióxido de titanio, factores de fotodegradación, propiedades mecánicas y autolimpiante. Referencias [1]E. Medina and H. Pérez, “Influencia del fotocatalizador dióxido de titanio en las propiedades autolimpiables y mecánicas del mortero de cemento - arena 1:4 - Cajamarca,” Universidad Nacional de Cajamarca, 2017. [2]G. Abella, “Mejora de las propiedades de materiales a base de cemento que contienen TiO 2 : propiedades autolimpiantes,” Universidad Politécnica de Madrid, 2015. [3]J. Gonzalez, “El Dióxido de titanio como material fotocatalitico y su influencia en la resistencia a la compresión en Morteros,” Universidad de San Buenaaventura Seccional Bello, 2015. [4]D. Jimenez and J. Moreno, “Efecto del reemplazo de cemento portland por el dioido de titanio en las propiedades mecanicas del mortero,” Pontificia Universidad Javeriana, 2016. [5]L. Wang, H. Zhang, and Y. Gao, “Effect of TiO2 nanoparticles on physical and mechanical properties of cement at low temperatures,” Adv. Mater. Sci. Eng., 2018, doi: 10.1155/2018/8934689. [6]Comisión de Normalización y de Fiscalización de Barreras Comerciales no Arancelares, Norma Técnica Peruana. Perú, 2013, p. 29. [7]ASTM Internacional, “ASTM C150,” 2021. https://www.astm.org/Database.Cart/Historical/C150-07-SP.htm. [8]M. Issa, “( current astm c150 / aashto m85 ) with limestone and process addition ( ASTM C465 / AASHTO M327 ) on the performance of concrete for pavement and Prepared By,” 2014. [9]S. Zailan, N. Mahmed, M. Abdullah, A. Sandu, and N. Shahedan, “Review on characterization and mechanical performance of self-cleaning concrete,” MATEC Web Conf., vol. 97, pp. 1–7, 2017, doi: 10.1051/matecconf/20179701022. [10]C. Chavarry, L. Chavarría, A. Valencia, E. Pereyra, J. Arieta, and C. Rengifo, “Hormigón reforzado con vidrio molido para controlar grietas y fisuras por contracción plástica,” Pro Sci., vol. 4, no. 31, pp. 31–41, 2020, doi: 10.29018/issn.2588-1000vol4iss31.2020pp31-41. [11]D. Tobaldi, “Materiali ceramici per edilizia con funzionalità fotocatalitica,” Università di Bologna, 2009. [12]Norme UNI, “Norma Italiana UNI 11259,” 2016. http://store.uni.com/catalogo/uni-11259-2008?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com. [13]E. Grebenisan, H. Szilagyi, A. Hegyi, C. Mircea, and C. Baera, “Directory lines regarding the desing and production of self-cleaning cementitious composites,” Sect. Green Build. Technol. Mater., vol. 19, no. 6, 2019. [14]M. Kaszynska, “The influence of TIO2 nanoparticles on the properties of self-cleaning cement mortar,” Int. Multidiscip. Sci. GeoConference SGEM, pp. 333–341, 2018.


2018 ◽  
Vol 760 ◽  
pp. 204-209 ◽  
Author(s):  
Magdaléna Šefflová

This study deals with determination of the properties of the fine recycled aggregate (FRA) concrete with partial replacement of natural sand in concrete mixtures. The FRA was obtained from concrete waste and crushed on fraction 0 – 4 mm by laboratory jaw crusher. The geometrical and physical properties of natural sand and the FRA were tested. The main goal of this study is evaluation of the basic physical and mechanical properties of the concrete with partial natural sand replacement by the FRA such as workability, water absorption capacity, compressive strength and flexural strength. A total four concrete mixtures were prepared. The first concrete mixture was prepared only with natural sand, did not include the FRA. In other concrete mixtures, natural sand was replaced by the FRA in various replacement ratios (40 %, 50 %, and 60 %). All concrete mixtures were designated with the same parameters for clear comparison. The workability of fresh concrete mixtures and physical and mechanical properties of hardened concrete were tested.


FLORESTA ◽  
2005 ◽  
Vol 35 (1) ◽  
Author(s):  
Teresa María Suirezs

Este trabajo tuvo por objetivo, estudiar el comportamiento de las propiedades físicas y mecánicas de la madera de Pinus taeda L. impregnada por vacío-presión con preservador CCA (CrO3; CuO; As2O5) con tres retenciones, 5, 10 y 15 kg/m3. El proceso de impregnado se realizó, por el método Burnett, aplicándose presión y vacío de 7 kg/m2 y – 0,5 kg/m2 respectivamente. Los ensayos de las propiedades físicas y mecánicas se determinaron según lo establecen, las Normas técnicas IRAM (Instituto Argentino de Racionalización de Materiales), ASTM (American Society for Testing and Materials) y DIN (Deutsche Industrie Norm). Las propiedades físicas como ser los pesos específicos aparentes no son afectadas por las retenciones de CCA en la madera. Las contracciones tanto en el sentido tangencial como radial en las maderas impregnadas son menores. Las propiedades mecánicas de resistencia a la flexión estática, compresión paralela a las fibras, tracción perpendicular a las fibras, disminuyen levemente sus valores promedios con respecto a la madera sin impregnar, pero estas diferencias no son estadísticamente significativas, para 95 % de confianza. La impregnación ha producido un efecto positivo en la dureza Janka transversal y en el corte paralelo a las fibras tangencial siendo estas diferencias estadísticamente significativas. Behaviour of the wood of Pinus taeda impregnated with Chrome, Copper, Arsenic (CCA) Abstract The physical and mechanical properties of the wood of Pinus taeda L. without impregnating and impregnating by empty - pressure with preserving CCA (Chrome, Copper, Arsenic) with three retentions, 5, 10 and 15 kg/m3 have been determined and analysed. The impregnation was accomplished in an autoclave applying the Burnett method. The physical and mechanical properties were determined according to the following technical Procedures; IRAM (Argentine Institute for Rationalization of materials), ASTM (American Society for Testing and Material) and DIN (Deutsche Industrie Norm). The results indicate that the specific weights of samples containing different percentages of humidity was not affected by the retentions of CCA in the wood. The shrinkage both in the tangential and radial directions in the impregnated samples were smaller in the impregnated sample. The mechanical resistance to statics flexion, compression parallel to the fibers, traction perpendicular to the fibers, hardness tangential and radial Janka and paralell radial cut, do not show statistically meaningful differences between impregnated and not impregnated samples; however the treatment has produced a positive effect in the hardness transverse Janka and in the parallel cut to the tangential fibers.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6970
Author(s):  
Paweł Niewiadomski ◽  
Anna Karolak ◽  
Damian Stefaniuk ◽  
Aleksandra Królicka ◽  
Jacek Szymanowski ◽  
...  

Recently, the research of innovative building materials is focused on applying supplementary materials in the form of micro- and nanopowders in cementitious composites due to the growing insistence on sustainable development. Considering above, in paper, a research on the effect of microsilica and SiO2 nanoparticles addition to cement paste, designed with Andreasen and Andersen (AA) packing density model (PDM), in terms of its physical and mechanical properties was conducted. Density, porosity, compressive strength, hardness, and modulus of indentation were investigated and compared regarding different amount of additives used in cement paste mixes. Microstructure of the obtained pastes was analyzed. The possibility of negative influence of alkali-silica reaction (ASR) on the mechanical properties of the obtained composites was analyzed. The results of the conducted investigations were discussed, and conclusions, also practical, were presented. The obtained results confirmed that the applied PDM may be an effective tool in cement paste design, when low porosity of prepared composite is required. On the other hand, the application of AA model did not bring satisfactory results of mechanical performance as expected, what was related, as shown by SEM imaging, with inhomogeneous dispersion of microsilica, and creation of agglomerates acting as reactive aggregates, what as a consequence caused ASR reaction, crack occurrence and lowered mechanical properties. Finally, the study found that the use of about 7.5% wt. of microsilica is the optimum in regards to obtain low porosity, while, to achieve improved mechanical properties, the use of 4 wt. % of microsilica seems to be optimal, in the case of tested cement pastes.


Author(s):  
Andrie Harmaji ◽  
Siswanti Zuraida

Plastic Composite Panel (PCP) is an innovation in the field of materials that uses recycling plastic waste to construct composite cement panels. This material innovation is one of the solutionto answer environmental problems caused by plastic waste. Some previous studies mostly used plastic waste for concrete aggregates. Thus, making this study different from previous studies. The purpose of this study is to make a prototype of a PCP that is environmentally friendly with panel dimensions sample of 100 x 30 x 10 mm thick. The method used is an experimental test using materials in the form of polyethylene terephtalate (PET) from used water bottle and cement waste as well as testing its physical and mechanical properties carried out in the laboratory. Variations in PET used for testing materials are 0- 20%. In addition to mechanical properties, specific gravity and porosity test is carried out. The best results shows that 5% PET addition to cement paste increase the flexutral strength to 4.47 MPa compared to control sample which has 3.26 MPa. Porosity test shows that addition of 10% PET reduce the density of PCP to 63.64% compared to control sample that has 44.44%.


2021 ◽  
Vol 20 (4) ◽  
pp. 329-337
Author(s):  
E. I. Batyanovskiy ◽  
A. I. Bondarovich ◽  
N. N. Kalinovskaya ◽  
P. V. Ryabchikov

. The paper presents the results of the development and implementation of the technology of self-compacting heavy structural concrete and the technology of concreting with its use of the largest foundation slab in Belarus (concrete volume ~9100 m3) of a high-rise building at the facility “Construction of a multifunctional complex in Minsk within the boundaries of Filimonova Street – Avenue Nezavisimosty – Makayonka Street”. The results of research are shown, which ensured the production of self-compacting concrete of class C35/45 with water resistance up to W20 (with the required W12 according to the project) from concrete mixtures of the maximum cone expansion of the PK6 (RK6) grade for three zones of the foundation slab different in degree of reinforcement: lower, middle and upper, with a total structure height of 3.5 m and plan dimensions ~(83´34) m. The technology of continuous (seamless) concreting has been developed and implemented, which made it possible to lay ~9100 m3 of concrete into the structure without defects within 42 hours of continuous operation, and a system of technological measures that prevented temperature cracking in concrete. The homogeneity of the physical and mechanical properties of concrete, confirmed by control tests, is ensured due to the uniform supply of the concrete mixture (from six  concrete pumps at the same time) in layers 200–300 mm high with a distance between the supply points of about 5–6 m and the vertical arrangement of the “trunks” of the concrete pipes during delivery of concrete to each point, as well as the fact that the time for feeding the next volume of concrete was significantly less than the setting time of the previously laid concrete (with a total concreting speed £0.1 m/h). Standardized and original test methods for concrete mixtures, hardening kinetics and properties of hardened concrete have been used during the development, research and implementation of the project. Control tests of physical and mechanical properties and characteristics of concrete, carried out at BNTU together with authorized  organizations controlling the progress of construction, as well as in independent (third-party) organizations, have confirmed their compliance with the design requirements.


Sign in / Sign up

Export Citation Format

Share Document