scholarly journals Simulated Annealing-Based Hyperspectral Data Optimization for Fish Species Classification: Can the Number of Measured Wavelengths Be Reduced?

2021 ◽  
Vol 11 (22) ◽  
pp. 10628
Author(s):  
John Chauvin ◽  
Ray Duran ◽  
Kouhyar Tavakolian ◽  
Alireza Akhbardeh ◽  
Nicholas MacKinnon ◽  
...  

Relative to standard red/green/blue (RGB) imaging systems, hyperspectral imaging systems offer superior capabilities but tend to be expensive and complex, requiring either a mechanically complex push-broom line scanning method, a tunable filter, or a large set of light emitting diodes (LEDs) to collect images in multiple wavelengths. This paper proposes a new methodology to support the design of a hypothesized system that uses three imaging modes—fluorescence, visible/near-infrared (VNIR) reflectance, and shortwave infrared (SWIR) reflectance—to capture narrow-band spectral data at only three to seven narrow wavelengths. Simulated annealing is applied to identify the optimal wavelengths for sparse spectral measurement with a cost function based on the accuracy provided by a weighted k-nearest neighbors (WKNN) classifier, a common and relatively robust machine learning classifier. Two separate classification approaches are presented, the first using a multi-layer perceptron (MLP) artificial neural network trained on sparse data from the three individual spectra and the second using a fusion of the data from all three spectra. The results are compared with those from four alternative classifiers based on common machine learning algorithms. To validate the proposed methodology, reflectance and fluorescence spectra in these three spectroscopic modes were collected from fish fillets and used to classify the fillets by species. Accuracies determined from the two classification approaches are compared with benchmark values derived by training the classifiers with the full resolution spectral data. The results of the single-layer classification study show accuracies ranging from ~68% for SWIR reflectance to ~90% for fluorescence with just seven wavelengths. The results of the fusion classification study show accuracies of about 95% with seven wavelengths and more than 90% even with just three wavelengths. Reducing the number of required wavelengths facilitates the creation of rapid and cost-effective spectral imaging systems that can be used for widespread analysis in food monitoring/food fraud, agricultural, and biomedical applications.

2019 ◽  
Vol 11 (22) ◽  
pp. 2605 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Wang ◽  
Li

Salt-affected soil is a prominent ecological and environmental problem in dry farming areas throughout the world. China has nearly 9.9 million km2 of salt-affected land. The identification, monitoring, and utilization of soil salinization have become important research topics for promoting sustainable progress. In this paper, using field-measured spectral data and soil salinity parameter data, through analysis and transformation of spectral data, five machine learning models, namely, random forest regression (RFR), support vector regression (SVR), gradient-boosted regression tree (GBRT), multilayer perceptron regression (MLPR), and least angle regression (Lars) are compared. The following performance measures of each model were evaluated: the collinear problems, handling data noise, stability, and the accuracy. In terms of these four aspects, the performance of each model on estimating soil salinity is evaluated. The results demonstrate that among the five models, RFR has the best performance in dealing with collinearity, RFR and MLPR have the best performance in dealing with data noise, and the SVR model is the most stable. The Lars model has the highest accuracy, with a determination coefficient (R2) of 0.87, ratio of performance to deviation (RPD) of 2.67, root mean square error (RMSE) of 0.18, and mean absolute percentage error (MAPE) of 0.11. Then, the comprehensive comparison and analysis of the five models are carried out, and it is found that the comprehensive performance of RFR model is the best; hence, this method is most suitable for estimating soil salinity using hyperspectral data. This study can provide a reference for the selection of regression methods in subsequent studies on estimating soil salinity using hyperspectral data.


2018 ◽  
Vol 58 (8) ◽  
pp. 1488 ◽  
Author(s):  
S. Rahman ◽  
P. Quin ◽  
T. Walsh ◽  
T. Vidal-Calleja ◽  
M. J. McPhee ◽  
...  

The objectives of the present study were to describe the approach used for classifying surface tissue, and for estimating fat depth in lamb short loins and validating the approach. Fat versus non-fat pixels were classified and then used to estimate the fat depth for each pixel in the hyperspectral image. Estimated reflectance, instead of image intensity or radiance, was used as the input feature for classification. The relationship between reflectance and the fat/non-fat classification label was learnt using support vector machines. Gaussian processes were used to learn regression for fat depth as a function of reflectance. Data to train and test the machine learning algorithms was collected by scanning 16 short loins. The near-infrared hyperspectral camera captured lines of data of the side of the short loin (i.e. with the subcutaneous fat facing the camera). Advanced single-lens reflex camera took photos of the same cuts from above, such that a ground truth of fat depth could be semi-automatically extracted and associated with the hyperspectral data. A subset of the data was used to train the machine learning model, and to test it. The results of classifying pixels as either fat or non-fat achieved a 96% accuracy. Fat depths of up to 12 mm were estimated, with an R2 of 0.59, a mean absolute bias of 1.72 mm and root mean square error of 2.34 mm. The techniques developed and validated in the present study will be used to estimate fat coverage to predict total fat, and, subsequently, lean meat yield in the carcass.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1241
Author(s):  
Véronique Gomes ◽  
Marco S. Reis ◽  
Francisco Rovira-Más ◽  
Ana Mendes-Ferreira ◽  
Pedro Melo-Pinto

The high quality of Port wine is the result of a sequence of winemaking operations, such as harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring and control, in order to consistently achieve the desired wine properties. The present work focuses on the harvesting stage, where the sugar content of grapes plays a key role as one of the critical maturity parameters. Our approach makes use of hyperspectral imaging technology to rapidly extract information from wine grape berries; the collected spectra are fed to machine learning algorithms that produce estimates of the sugar level. A consistent predictive capability is important for establishing the harvest date, as well as to select the best grapes to produce specific high-quality wines. We compared four different machine learning methods (including deep learning), assessing their generalization capacity for different vintages and varieties not included in the training process. Ridge regression, partial least squares, neural networks and convolutional neural networks were the methods considered to conduct this comparison. The results show that the estimated models can successfully predict the sugar content from hyperspectral data, with the convolutional neural network outperforming the other methods.


2020 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Stuart Phinn

Machine learning has been employed for various mapping and modeling tasks using input variables from different sources of remote sensing data. For feature selection involving high- spatial and spectral dimensionality data, various methods have been developed and incorporated into the machine learning framework to ensure an efficient and optimal computational process. This research aims to assess the accuracy of various feature selection and machine learning methods for estimating forest height using AISA (airborne imaging spectrometer for applications) hyperspectral bands (479 bands) and airborne light detection and ranging (lidar) height metrics (36 metrics), alone and combined. Feature selection and dimensionality reduction using Boruta (BO), principal component analysis (PCA), simulated annealing (SA), and genetic algorithm (GA) in combination with machine learning algorithms such as multivariate adaptive regression spline (MARS), extra trees (ET), support vector regression (SVR) with radial basis function, and extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin) classifiers were evaluated. The results demonstrated that the combinations of BO-XGBdart and BO-SVR delivered the best model performance for estimating tropical forest height by combining lidar and hyperspectral data, with R2 = 0.53 and RMSE = 1.7 m (18.4% of nRMSE and 0.046 m of bias) for BO-XGBdart and R2 = 0.51 and RMSE = 1.8 m (15.8% of nRMSE and −0.244 m of bias) for BO-SVR. Our study also demonstrated the effectiveness of BO for variables selection; it could reduce 95% of the data to select the 29 most important variables from the initial 516 variables from lidar metrics and hyperspectral data.


Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 193
Author(s):  
Alanna V. Zubler ◽  
Jeong-Yeol Yoon

Plant stresses have been monitored using the imaging or spectrometry of plant leaves in the visible (red-green-blue or RGB), near-infrared (NIR), infrared (IR), and ultraviolet (UV) wavebands, often augmented by fluorescence imaging or fluorescence spectrometry. Imaging at multiple specific wavelengths (multi-spectral imaging) or across a wide range of wavelengths (hyperspectral imaging) can provide exceptional information on plant stress and subsequent diseases. Digital cameras, thermal cameras, and optical filters have become available at a low cost in recent years, while hyperspectral cameras have become increasingly more compact and portable. Furthermore, smartphone cameras have dramatically improved in quality, making them a viable option for rapid, on-site stress detection. Due to these developments in imaging technology, plant stresses can be monitored more easily using handheld and field-deployable methods. Recent advances in machine learning algorithms have allowed for images and spectra to be analyzed and classified in a fully automated and reproducible manner, without the need for complicated image or spectrum analysis methods. This review will highlight recent advances in portable (including smartphone-based) detection methods for biotic and abiotic stresses, discuss data processing and machine learning techniques that can produce results for stress identification and classification, and suggest future directions towards the successful translation of these methods into practical use.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4299 ◽  
Author(s):  
Eui Jung Moon ◽  
Youngsik Kim ◽  
Yu Xu ◽  
Yeul Na ◽  
Amato J. Giaccia ◽  
...  

There has been strong demand for the development of an accurate but simple method to assess the freshness of food. In this study, we demonstrated a system to determine food freshness by analyzing the spectral response from a portable visible/near-infrared (VIS/NIR) spectrometer using the Convolutional Neural Network (CNN)-based machine learning algorithm. Spectral response data from salmon, tuna, and beef incubated at 25 °C were obtained every minute for 30 h and then categorized into three states of “fresh”, “likely spoiled”, and “spoiled” based on time and pH. Using the obtained spectral data, a CNN-based machine learning algorithm was built to evaluate the freshness of experimental objects. In addition, a CNN-based machine learning algorithm with a shift-invariant feature can minimize the effect of the variation caused using multiple devices in a real environment. The accuracy of the obtained machine learning model based on the spectral data in predicting the freshness was approximately 85% for salmon, 88% for tuna, and 92% for beef. Therefore, our study demonstrates the practicality of a portable spectrometer in food freshness assessment.


Author(s):  
Christian Knaak ◽  
Moritz Kröger ◽  
Frederic Schulze ◽  
Peter Abels ◽  
Arnold Gillner

An effective process monitoring strategy is a requirement for meeting the challenges posed by increasingly complex products and manufacturing processes. To address these needs, this study investigates a comprehensive scheme based on classical machine learning methods, deep learning algorithms, and feature extraction and selection techniques. In a first step, a novel deep learning architecture based on convolutional neural networks (CNN) and gated recurrent units (GRU) is introduced to predict the local weld quality based on mid-wave infrared (MWIR) and near-infrared (NIR) image data. The developed technology is used to discover critical welding defects including lack of fusion (false friends), sagging and lack of penetration, and geometric deviations of the weld seam. Additional work is conducted to investigate the significance of various geometrical, statistical, and spatio-temporal features extracted from the keyhole and weld pool regions. Furthermore, the performance of the proposed deep learning architecture is compared to that of classical supervised machine learning algorithms, such as multi-layer perceptron (MLP), logistic regression (LogReg), support vector machines (SVM), decision trees (DT), random forest (RF) and k-Nearest Neighbors (kNN). Optimal hyperparameters for each algorithm are determined by an extensive grid search. Ultimately, the three best classification models are combined into an ensemble classifier that yields the highest detection rates and achieves the most robust estimation of welding defects among all classifiers studied, which is validated on previously unknown welding trials.


Sign in / Sign up

Export Citation Format

Share Document