scholarly journals Alginate Modification and Lectin-Conjugation Approach to Synthesize the Mucoadhesive Matrix

2021 ◽  
Vol 11 (24) ◽  
pp. 11818
Author(s):  
Arlina Prima Putri ◽  
Francesco Picchioni ◽  
Sri Harjanto ◽  
Mochamad Chalid

Alginates are natural anionic polyelectrolytes investigated in various biomedical applications, such as drug delivery, tissue engineering, and 3D bioprinting. Functionalization of alginates is one possible way to provide a broad range of requirements for those applications. A range of techniques, including esterification, amidation, acetylation, phosphorylation, sulfation, graft copolymerization, and oxidation and reduction, have been implemented for this purpose. The rationale behind these investigations is often the combination of such modified alginates with different molecules. Particularly promising are lectin conjugate macromolecules for lectin-mediated drug delivery, which enhance the bioavailability of active ingredients on a specific site. Most interesting for such application are alginate derivatives, because these macromolecules are more resistant to acidic and enzymatic degradation. This review will report recent progress in alginate modification and conjugation, focusing on alginate-lectin conjugation, which is proposed as a matrix for mucoadhesive drug delivery and provides a new perspective for future studies with these conjugation methods.

Soft Matter ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. 1704-1715 ◽  
Author(s):  
Jieling Li ◽  
Ruirui Xing ◽  
Shuo Bai ◽  
Xuehai Yan

The review introduces several methods for fabrication of robust peptide-based hydrogels and their biological applications in the fields of drug delivery and antitumor therapy, antimicrobial and wound healing materials, and 3D bioprinting and tissue engineering.


2021 ◽  
Author(s):  
Andrea S. Theus ◽  
Liqun Ning ◽  
Linqi Jin ◽  
Ryan K. Roeder ◽  
Jianyi Zhang ◽  
...  

Abstract Three-dimensional (3D) bioprinting is rapidly evolving, offering great potential for manufacturing functional tissue analogs for use in diverse biomedical applications, including regenerative medicine, drug delivery, and disease modeling. Biomaterials used as bioinks in printing processes must meet strict physiochemical and biomechanical requirements to ensure adequate printing fidelity, while closely mimicking the characteristics of the native tissue. To achieve this goal, nanomaterials are increasingly being investigated as a robust tool to functionalize bioink materials. In this review, we discuss the growing role of different nano-biomaterials in engineering functional bioinks for a variety of tissue engineering applications. The development and commercialization of these nanomaterial solutions for 3D bioprinting would be a significant step towards clinical translation of biofabrication.


2021 ◽  
Vol 9 ◽  
Author(s):  
Saurav Das ◽  
Debapratim Das

Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.


2021 ◽  
Author(s):  
Marissa Morales-Moctezuma ◽  
Sebastian G Spain

Nanogels have emerged as innovative platforms for numerous biomedical applications including gene and drug delivery, biosensors, imaging, and tissue engineering. Polymerisation-induced thermal self-assembly (PITSA) has been shown to be suitable...


2022 ◽  
Vol 23 (2) ◽  
pp. 610
Author(s):  
Teresa Aditya ◽  
Jean Paul Allain ◽  
Camilo Jaramillo ◽  
Andrea Mesa Restrepo

Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.


The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 654 ◽  
Author(s):  
Ana Isabel Barbosa ◽  
Ana Joyce Coutinho ◽  
Sofia A. Costa Lima ◽  
Salette Reis

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


2020 ◽  
Vol 4 (4) ◽  
pp. 1089-1104 ◽  
Author(s):  
Fang Fang ◽  
Fanling Meng ◽  
Liang Luo

This review summarized most recent advances of designing strategies of polydiacetylene-based smart biomaterials with unique colorimetric and mechanical properties, as well as their applications in biosensing, drug delivery, and tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document