scholarly journals Phage Display Preparation of Specific Polypeptides in Atherosclerotic Foam Cells

2022 ◽  
Vol 12 (2) ◽  
pp. 562
Author(s):  
Xiang Ji ◽  
Dan Liu ◽  
Feng Wu ◽  
Yu Cen ◽  
Lan Ma

Atherosclerosis and related complications are the most common causes of death in modern societies. Macrophage-derived foam cells play critical roles in the initiation and progression of atherosclerosis. Effective, rapid, and instrument-independent detection in the early stage of chronic atherosclerosis progression could provide an opportunity for early intervention and treatment. Therefore, as a starting point, in this study, we aimed to isolate and prepare foam cell-specific polypeptides using a phage display platform. The six target polypeptides, which were acquired in this study, were evaluated by ELISA and showed strong specificity with foam cells. Streptavidin coupled quantum dots (QDs) were used as fluorescence developing agents, and images of biotin-modified polypeptides specifically binding with foam cells were clearly observed. The polypeptides obtained in this study could lay the foundation for developing a rapid detection kit for early atherosclerosis lesions and could provide new materials for research on the mechanisms of foam cell formation and the development of blocking drugs.

Author(s):  
Parimalanandhini Duraisamy ◽  
Sangeetha Ravi ◽  
Mahalakshmi Krishnan ◽  
Catherene M. Livya ◽  
Beulaja Manikandan ◽  
...  

: Atherosclerosis, a major contributor to cardiovascular disease is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes recruitment of monocytes to the inflammatory sites and subside pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 has to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of proinflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage has atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.


2021 ◽  
Vol 22 (5) ◽  
pp. 2529
Author(s):  
Amin Javadifar ◽  
Sahar Rastgoo ◽  
Maciej Banach ◽  
Tannaz Jamialahmadi ◽  
Thomas P. Johnston ◽  
...  

Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Annette E Neele ◽  
Koen H Prange ◽  
Marten A Hoeksema ◽  
Saskia van der Velden ◽  
Tina Lucas ◽  
...  

Aim: Foam cells are a key hallmark of atherosclerotic lesion formation. Within the atherosclerotic lesion macrophages scavenge modified lipoproteins and thereby acquire their foam cell characteristics. Besides their foam cell phenotype, macrophages can have specific inflammation regulatory functions in atherosclerotic lesions. Epigenetic pathways are crucial for monocyte to macrophage differentiation and activation. The H3K27 demethylase Kdm6b (also known as Jmjd3) is regulated in response to various triggers and regulates several modes of macrophage activation. Given the crucial role of macrophage foam cells in atherosclerosis, we here studied Kdm6b in peritoneal foam cells in order to identify regulated pathways. Material and Methods: A myeloid deficient Kdm6b mice (LysMCre-Kdm6b fl/fl ) was generated and bone marrow of Kdm6b wt or Kdm6b del mice was transplanted to irradiated Ldlr -/- mice which were fed a high fat diet for 9 weeks to induce foam cell formation. Peritoneal foam cells from Kdm6b del or Kdm6b wt mice were isolated and used for RNA-sequencing analysis. Results: Among the list of downregulated genes many genes involving fibrosis were affected in Kdm6b deficient foam cells including Collagen genes ( Col1a1 , Col1a2 ), Alpha smooth muscle actin ( Acta2 ) and Fibronectin-1 ( Fn1 ). Pathway analysis on downregulated genes ( P -value < 0.05) indicated that pathways involved in epithelial to mesenchymaltransition (EMT) ( q- value=10 -13 ) and extracellular matrix organization ( q- value=10 -4 ) were significantly downregulated. Pro-fibrotic pathways were thus strongly suppressed in Kdm6b deleted foam cells. Analysis of published datasets of foam cells showed that foam cell formation induces these pro-fibrotic characteristics. Overlay of both data sets indicated that fibrotic genes which are induced upon foam cell formation, are reduced in the absence of Kdm6b. These data suggest that foam cell formation induces a pro-fibrotic gene signature in a Kdm6b-dependent manner. Conclusion: We identified Kdm6b as a novel regulator of the pro-fibrotic signature of peritoneal foam cells.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 584 ◽  
Author(s):  
Anastasia V. Poznyak ◽  
Wei-Kai Wu ◽  
Alexandra A. Melnichenko ◽  
Reinhard Wetzker ◽  
Vasily Sukhorukov ◽  
...  

Atherosclerosis is associated with acute cardiovascular conditions, such as ischemic heart disease, myocardial infarction, and stroke, and is the leading cause of morbidity and mortality worldwide. Our understanding of atherosclerosis and the processes triggering its initiation is constantly improving, and, during the last few decades, many pathological processes related to this disease have been investigated in detail. For example, atherosclerosis has been considered to be a chronic inflammation triggered by the injury of the arterial wall. However, recent works showed that atherogenesis is a more complex process involving not only the immune system, but also resident cells of the vessel wall, genetic factors, altered hemodynamics, and changes in lipid metabolism. In this review, we focus on foam cells that are crucial for atherosclerosis lesion formation. It has been demonstrated that the formation of foam cells is induced by modified low-density lipoprotein (LDL). The beneficial effects of the majority of therapeutic strategies with generalized action, such as the use of anti-inflammatory drugs or antioxidants, were not confirmed by clinical studies. However, the experimental therapies targeting certain stages of atherosclerosis, among which are lipid accumulation, were shown to be more effective. This emphasizes the relevance of future detailed investigation of atherogenesis and the importance of new therapies development.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xu Zhang ◽  
Muath Bishawi ◽  
Ge Zhang ◽  
Varun Prasad ◽  
Ellen Salmon ◽  
...  

Abstract Novel atherosclerosis models are needed to guide clinical therapy. Here, we report an in vitro model of early atherosclerosis by fabricating and perfusing multi-layer arteriole-scale human tissue-engineered blood vessels (TEBVs) by plastic compression. TEBVs maintain mechanical strength, vasoactivity, and nitric oxide (NO) production for at least 4 weeks. Perfusion of TEBVs at a physiological shear stress with enzyme-modified low-density-lipoprotein (eLDL) with or without TNFα promotes monocyte accumulation, reduces vasoactivity, alters NO production, which leads to endothelial cell activation, monocyte accumulation, foam cell formation and expression of pro-inflammatory cytokines. Removing eLDL leads to recovery of vasoactivity, but not loss of foam cells or recovery of permeability, while pretreatment with lovastatin or the P2Y11 inhibitor NF157 reduces monocyte accumulation and blocks foam cell formation. Perfusion with blood leads to increased monocyte adhesion. This atherosclerosis model can identify the role of drugs on specific vascular functions that cannot be assessed in vivo.


Cytokine ◽  
2021 ◽  
Vol 146 ◽  
pp. 155630
Author(s):  
Minghua Zhang ◽  
Jing Liu ◽  
Rong Gao ◽  
Yazhuo Hu ◽  
Li Lu ◽  
...  

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Zierden ◽  
C Millarg ◽  
S Baldus ◽  
S Rosenkranz ◽  
E M Berghausen ◽  
...  

Abstract Introduction and purpose Atherosclerosis is a chronic inflammatory disease of arteries and represents the main underlying cause of death worldwide. Macrophages are major drivers of atherosclerosis by ingestion of lipoproteins, foam cell formation, and secretion of pro-inflammatory mediators. Although macrophages outnumber other leukocytes in atherosclerotic plaques, T and B lymphocytes can shape the course of disease by promoting or mitigating inflammatory responses. Leukocytes highly express the phosphoinositide 3-kinase isoform delta (PI3Kd), exerting a key role in the regulation of immune responses including the activation, proliferation, differentiation, and effector function of lymphocytes. Since macrophages and lymphocytes are all major effectors of atherosclerosis, we aimed to understand the role of PI3Kd in these leukocytes during atherogenesis. Methods and results To investigate the role of haematopoietic PI3Kd in atherosclerosis, bone marrow from PI3Kd−/− or PI3Kd+/+ mice was transplanted into LDLR−/− mice. After 6 weeks of feeding on an atherogenic diet, PI3Kd−/− recipient LDLR−/− mice displayed significantly impaired CD4+ and CD8+ T-cell numbers, CD4+ T-cell activation, CD4+ effector T cells, and proatherogenic CD4+ T helper (Th) 1 responses in para-aortic lymph nodes and spleen compared with PI3Kd+/+ transplanted controls. Surprisingly, the net effect of PI3Kd deficiency was a substantial increase of aortic inflammation and atherosclerosis in LDLR−/− mice. Moreover, haematopoietic PI3Kd deficiency augmented macrophage accumulation in atherosclerotic plaques of LDLR−/− mice, whereas major macrophage functions including foam cell formation, efferocytosis, and cytokine secretion were unaffected by PI3Kd inactivation in these phagocytes. However, haematopoietic PI3Kd deficiency led to depletion of atheroprotective B-1 cells and reduction of proatherogenic B-2 cells in LDLR−/− mice. Moreover, haematopoietic PI3Kd deficiency caused a significant reduction of regulatory CD4+ T cells (Tregs) in plaques, para-aortic lymph nodes, and spleen of LDLR−/− mice. Furthermore, PI3Kd−/− Tregs exhibited reduced secretion of anti-inflammatory cytokines IL-10 and TGF-b as well as impaired suppression of CD4+ T-cell proliferation. Consequently, adoptive transfer of PI3Kd+/+ Tregs fully constrains the atherosclerotic burden in PI3Kd−/− transplanted LDLR−/− mice without affecting B cell numbers. Conclusions We demonstrate that PI3Kd plays a crucial role in B lymphocytes, Th1 cells, and Tregs during atherogenesis. Lack of PI3Kd signalling in atheroprotective Treg responses outplays its impact on proatherogenic Th1 responses, thus leading to aggravated atherosclerosis. Hence, PI3Kd is a key regulator of Treg biology and thereby protects against atherosclerosis progression. Acknowledgement/Funding Center for Molecular Medicine Cologne (CMMC) and the Marga and Walter Boll-Stiftung


2021 ◽  
Vol 12 ◽  
Author(s):  
Pooja Agarwal ◽  
Siamon Gordon ◽  
Fernando O. Martinez

Mycobacterium tuberculosis infects primarily macrophages in the lungs. Infected macrophages are surrounded by other immune cells in well organised structures called granulomata. As part of the response to TB, a type of macrophage loaded with lipid droplets arises which we call Foam cell macrophages. They are macrophages filled with lipid laden droplets, which are synthesised in response to increased uptake of extracellular lipids, metabolic changes and infection itself. They share the appearance with atherosclerosis foam cells, but their lipid contents and roles are different. In fact, lipid droplets are immune and metabolic organelles with emerging roles in Tuberculosis. Here we discuss lipid droplet and foam cell formation, evidence regarding the inflammatory and immune properties of foam cells in TB, and address gaps in our knowledge to guide further research.


2021 ◽  
Vol 8 ◽  
Author(s):  
Aureli Luquero ◽  
Lina Badimon ◽  
Maria Borrell-Pages

The relevance of PCSK9 in atherosclerosis progression is demonstrated by the benefits observed in patients that have followed PCSK9-targeted therapies. The impact of these therapies is attributed to the plasma lipid-lowering effect induced when LDLR hepatic expression levels are recovered after the suppression of soluble PCSK9. Different studies show that PCSK9 is involved in other mechanisms that take place at different stages during atherosclerosis development. Indeed, PCSK9 regulates the expression of key receptors expressed in macrophages that contribute to lipid-loading, foam cell formation and atherosclerotic plaque formation. PCSK9 is also a regulator of vascular inflammation and its expression correlates with pro-inflammatory cytokines release, inflammatory cell recruitment and plaque destabilization. Furthermore, anti-PCSK9 approaches have demonstrated that by inhibiting PCSK9 activity, the progression of atherosclerotic disease is diminished. PCSK9 also modulates thrombosis by modifying platelets steady-state, leukocyte recruitment and clot formation. In this review we evaluate recent findings on PCSK9 functions in cardiovascular diseases beyond LDL-cholesterol plasma levels regulation.


Sign in / Sign up

Export Citation Format

Share Document