scholarly journals Influence of the Microwave Heating Time on the Self-Healing Properties of Asphalt Mixtures

2017 ◽  
Vol 7 (10) ◽  
pp. 1076 ◽  
Author(s):  
◽  
2018 ◽  
Vol 129 ◽  
pp. 871-883 ◽  
Author(s):  
Yihan Sun ◽  
Shaopeng Wu ◽  
Quantao Liu ◽  
Jianfu Hu ◽  
Yuan Yuan ◽  
...  

2020 ◽  
Vol 32 (12) ◽  
pp. 04020355
Author(s):  
Farah Zaremotekhases ◽  
Ipshit Ibne Idris ◽  
Marwa M. Hassan ◽  
Louay N. Mohammad ◽  
Ioan I. Negulescu

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1266 ◽  
Author(s):  
Benan Shu ◽  
Shiwen Bao ◽  
Shaopeng Wu ◽  
Lijie Dong ◽  
Chao Li ◽  
...  

The idea of prolonging the service life of asphalt mixture by improving the self-healing ability of asphalt has received extensive attention in recent years. In view of this, this work synthesized three kinds of encapsulating rejuvenator fibers to improve self-healing properties of asphalt mixtures. A series of characterizations were performed to study the morphology, chemical structure and thermal stability of the three kinds of fibers. Subsequently, the road performance of asphalt mixture containing the fiber were investigated, which included high and low temperature, water sensitivity and fatigue performances. Finally, the self-healing performance of asphalt mixture containing the fiber was investigated by 3PB test. The results revealed that the three kinds of encapsulating rejuvenator fibers were successfully synthesized. The fibers had excellent thermal stability, which met temperature requirements in the mixing and compaction process of asphalt mixtures. Road performance of asphalt mixture containing the fiber met the requirements. Self-healing ability of asphalt mixture containing the fiber was improved. Synergistic action of temperature and rejuvenator could further significantly improve the self-healing ability of the asphalt mixture.


2021 ◽  
Vol 293 ◽  
pp. 123475
Author(s):  
Laura Trigos ◽  
Juan Gallego ◽  
José Ignacio Escavy ◽  
Luis Picado-Santos

2021 ◽  
Vol 4 (4) ◽  
pp. 875
Author(s):  
Alida Danar Saputra ◽  
Anissa Noor Tajudin

Steel waste is waste generated from a large or small amount of steel production process. The results of steel waste disposal can pollute the environment if not done a good treatment and countermeasure so that it has value benefits. This study uses steel lathe waste additives to determine the self-healing ability of asphalt in the AC-WC mixture. Steel lathe waste used with varying degrees of steel lathe 0%, 0,25%, 0,5%, 0,75%, 1% and asphalt content used by 5,5%. After obtaining the data used in the study, samples were made for asphalt mixtures with varying degrees. Then the finished sample is divided into 4 parts to be tested for temperature rise on each steel lathe mixture using a thermal camera. And tested using a threepoint bending test to determine the ability of asphalt selfhealing in the AC-WC mixture that occurs for 5 cycles with a heating duration of 20 seconds, 40 seconds, 60 seconds. From the results of the research on the content of a mixture of 0% steel lathe proved the sample can do self-healing but the results obtained are not as good as when using variations in the added ingredients of steel fiber mixture 0,25%, 0,5%, 0,75% and 1%. ABSTRAKLimbah baja adalah buangan yang dihasilkan dari suatu proses produksi baja baik dalam jumlah yang besar atau sedikit. Hasil buangan limbah baja dapat mecemari lingkungan apabila tidak dilakukan pengolahan dan penanggulangan yang baik sehingga memiliki nilai manfaat. Penelitian ini menggunakan bahan tambahan limbah bubutan baja untuk dapat mengetahui kemampuan self healing aspal pada campuran AC-WC. Limbah bubutan baja yang digunakan dengan kadar variasi bubutan baja 0%, 0,25%, 0,5%, 0,75%, 1% dan kadar aspal yang dipakai sebesar 5,5%. Setelah didapatkan data yang dipakai dalam penelitian dilakukan pembuatan sampel terhadap campuran aspal dengan variasi kadar. Kemudian sampel yang telah jadi di belah menjadi 4 bagian untuk diuji kenaikan temperatur pada setiap campuran bubutan baja dengan menggunakan kamera thermal. Serta diuji dengan menggunakan alat threepoint bending test untuk mengetahui kemampuan selfhealing aspal pada campuran AC-WC yang terjadi selama 5 siklus dengan durasi pemanasan 20 detik, 40 detik, 60 detik. Dari hasil penelitian pada kadar campuran bubutan baja 0% terbukti sampel dapat melakukan self healing tetapi hasil yang didapatkan tidak sebaik ketika menggunakan variasi bahan tambah campuran serat baja 0,25%, 0,5%, 0,75% dan 1%.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2502 ◽  
Author(s):  
José Manuel Lizárraga ◽  
Juan Gallego

Nowadays, the self-healing of asphalt pavements promoted by microwave radiation heating energy is gaining attention and strength in the scientific community. However, most of these studies are only conceptual and, thus, remain shrouded in uncertainty regarding technology development, economy, and application effect. Therefore, there are several efforts underway to offer more effective assisted healing treatments that are capable of overcoming such uncertainties. This paper aims to assess and quantify the healing performance rates (HR) of half-warm recycled asphalt (HWRA) mixtures containing electric arc furnace (EAF) slag and total recycled asphalt pavement (RAP) rates. To this end, a novel assisted thermomechanical healing treatment (i.e., a recompaction-based technique and microwave heating energy) was put forward to promote the potential healing effect of this treatment on the mechanical properties of the asphalt mixtures. In order to do this, three microwave heating temperatures (25 °C, 60 °C, and 80 °C) and three mechanical recompaction levels (0, 25, and 50 gyrations) were selected. After that, the healing performance rates (%, HR) of the asphalt mixtures were calculated by repeated indirect tensile strength (ITS) and indirect tensile stiffness modulus (ITSM). The results indicated that the 8% EAF slag mixture was found to provide significant microwave heating energy savings by up to 69% compared with the benchmark 100% RAP mixture, and, at the same time, it experienced a remarkable stiffness recovery response of 140% of the initial mechanical properties. These findings encourage greater confidence in promoting this innovative thermomechanical-based healing treatment for in-situ surface course asphalt mixtures of road pavements.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1392 ◽  
Author(s):  
Jiuming Wan ◽  
Yue Xiao ◽  
Wei Song ◽  
Cheng Chen ◽  
Pan Pan ◽  
...  

Ultra-thin wearing course (UTWC) has been developed in pavement preventive maintenance for many years. However, how to prolong the service life of UTWC still requires further research. This study introduced AC-5 and SMA-5 asphalt mixtures, which can be induction heated. Steel fiber and steel slag were used in the mixtures as additives. Marshall Stability and induction heating property of mixtures were characterized. In addition, self-healing property of UTWC materials had been emphatically conducted. Adding steel fiber in mixtures led to higher Marshall Stability and lower flow value, while steel slag generally showed a negative effect. Induction heating property showed a positive relationship with the additives. Induction heating time was positively correlated to the healing ratio of the mixtures. Induction heating on the mixtures could recover the strength of mixtures to a certain degree. Mixtures with more steel fiber showed a higher healing ratio. Basalt-steel slag based mixtures showed better healing ratios than the basalt based mixtures. The healing ratios of mixtures illustrated a decreasing tendency as the healing cycle increased.


2014 ◽  
Vol 599 ◽  
pp. 193-197 ◽  
Author(s):  
Yi Han Sun ◽  
Quan Tao Liu ◽  
Shao Peng Wu ◽  
Fei Shang

In this research, the potential of using steel slag asphalt mixture as a self-healing material was investigated by means of microwave heating. The microwave heating rate and thermal conductivity of asphalt mixtures were tested respectively. The result shown that, the heating rate of steel slag asphalt mixtures is approximately two times faster than limestone asphalt mixtures. While its thermal conductivity is slightly lower. It is concluded that microwave heating can be used to promote self-healing of steel slag asphalt mixture.


2021 ◽  
Vol 942 (1) ◽  
pp. 012024
Author(s):  
L Trigos ◽  
J Gallego ◽  
JI Escavy ◽  
D Ayala

Abstract The current concern for the environment and the need to reduce greenhouse gas emissions have led to new technologies related to microwave energy. One of these technologies is the self-healing of asphalt mixtures, which consists of repairing pavements through microwave application on the surface, avoiding premature road failure. Asphalt mixtures for roads are made up of more than 90% by weight of aggregates of different compositions and origins, in addition to a bituminous binder and sometimes additives. From other studies, it is known that the physical behaviour of aggregates is a function of their composition, that is, of their minerals and their proportions. Microwave heating of aggregates has proven to be an effective technique, but there are gaps in understanding how microwaves interact with aggregates and the reasons for their differential heating. This research has studied 18 minerals that are commonly part of the rocks used as road aggregates. The objective is to identify the minerals that present the best heating rates to relate them to the differential heating of aggregates for roads. The results obtained are promising, facilitating the understanding of microwave heating of minerals. Regarding chemical composition, elements such as MgO, MnO, TiO, Al2O3, Fe2O3, and CaO (in silicate minerals) favour the heating of minerals and other elements such as SiO2 and K2O Na2O, and CaO (in carbonate minerals) retard the heating. Regarding the physical properties, density and habit of the minerals do not influence the heating, but other properties, such as the diaphaneity and the size of the crystals, influence the heating with microwaves.


Sign in / Sign up

Export Citation Format

Share Document