scholarly journals Multi-Objective Interval Prediction of Load Based on the Conditional Copula Function

2019 ◽  
Vol 9 (5) ◽  
pp. 955 ◽  
Author(s):  
Gang Zhang ◽  
Zhixuan Li ◽  
Jinwang Hou ◽  
Kaoshe Zhang ◽  
Fuchao Liu ◽  
...  

Compared with the point prediction, the interval prediction of the load could more effectively guarantee the safe operation of the power system. In view of the problem that the correlation between adjacent load data is not fully utilized so that the prediction accuracy is reduced, this paper proposes the conditional copula function interval prediction method, which could make full use of the correlation relationship between adjacent load data so as to obtain the interval prediction result. At the same time, there are the different prediction results of the method under different parameters, and the evaluation results of the two accuracy evaluation indicators containing PICP (prediction interval coverage probability) and the PIAW (prediction interval average width) are inconsistent, the above result that the optimal parameters and prediction results cannot be obtained, therefore, the NSGA-II (Non-dominated Sorting Genetic Algorithm-II) multi-objective optimization algorithm is proposed to seek out the optimal solution set, and by evaluating the solution set, obtain the optimal prediction model parameters and the corresponding prediction results. Finally, the proposed method is applied to the three regions of Shaanxi Province, China to conduct ultra-short-term load prediction, and compare it with the commonly used load interval prediction method such as Gaussian process regression (GPR) algorithm, artificial neural network (ANN), extreme learning machine (ELM) and others, and the results show that the proposed method always has better prediction accuracy when applying it to different regions.

2019 ◽  
Vol 7 (4) ◽  
pp. 802-812 ◽  
Author(s):  
Gang ZHANG ◽  
Zhixuan LI ◽  
Kaoshe ZHANG ◽  
Lei ZHANG ◽  
Xia HUA ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Mao Yang ◽  
Tian Peng ◽  
Xin Su ◽  
Miaomiao Ma

The periodicity and non-stationary nature of photovoltaic (PV) output power make the point prediction result contain very little information, increase the difficulty of describing the prediction uncertainty, and it is difficult to ensure the most efficient operation of the power system. Effectively predicting the PV power range will greatly improve the economics and stability of the grid. Therefore, this paper proposes an improved generalized based on the combination of wavelet packet (WP) and least squares support vector machine (LSSVM) to obtain higher accuracy point prediction results. The error mixed distribution function is used to fit the probability distribution of the prediction error, and the probability prediction is performed to obtain the prediction interval. The coverage rate and average width of the prediction interval are used as indicators to evaluate the prediction results of the interval. By comparing with the results of conventional methods based on normal distribution, at 95 and 90% confidence levels, the method proposed in this paper achieves higher coverage while reducing the average bandwidth by 5.238 and 3.756%, which verifies the effectiveness of the proposed probability interval prediction method.


2021 ◽  
Vol 11 (10) ◽  
pp. 4575
Author(s):  
Eduardo Fernández ◽  
Nelson Rangel-Valdez ◽  
Laura Cruz-Reyes ◽  
Claudia Gomez-Santillan

This paper addresses group multi-objective optimization under a new perspective. For each point in the feasible decision set, satisfaction or dissatisfaction from each group member is determined by a multi-criteria ordinal classification approach, based on comparing solutions with a limiting boundary between classes “unsatisfactory” and “satisfactory”. The whole group satisfaction can be maximized, finding solutions as close as possible to the ideal consensus. The group moderator is in charge of making the final decision, finding the best compromise between the collective satisfaction and dissatisfaction. Imperfect information on values of objective functions, required and available resources, and decision model parameters are handled by using interval numbers. Two different kinds of multi-criteria decision models are considered: (i) an interval outranking approach and (ii) an interval weighted-sum value function. The proposal is more general than other approaches to group multi-objective optimization since (a) some (even all) objective values may be not the same for different DMs; (b) each group member may consider their own set of objective functions and constraints; (c) objective values may be imprecise or uncertain; (d) imperfect information on resources availability and requirements may be handled; (e) each group member may have their own perception about the availability of resources and the requirement of resources per activity. An important application of the new approach is collective multi-objective project portfolio optimization. This is illustrated by solving a real size group many-objective project portfolio optimization problem using evolutionary computation tools.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Genetics ◽  
2021 ◽  
Author(s):  
Marco Lopez-Cruz ◽  
Gustavo de los Campos

Abstract Genomic prediction uses DNA sequences and phenotypes to predict genetic values. In homogeneous populations, theory indicates that the accuracy of genomic prediction increases with sample size. However, differences in allele frequencies and in linkage disequilibrium patterns can lead to heterogeneity in SNP effects. In this context, calibrating genomic predictions using a large, potentially heterogeneous, training data set may not lead to optimal prediction accuracy. Some studies tried to address this sample size/homogeneity trade-off using training set optimization algorithms; however, this approach assumes that a single training data set is optimum for all individuals in the prediction set. Here, we propose an approach that identifies, for each individual in the prediction set, a subset from the training data (i.e., a set of support points) from which predictions are derived. The methodology that we propose is a Sparse Selection Index (SSI) that integrates Selection Index methodology with sparsity-inducing techniques commonly used for high-dimensional regression. The sparsity of the resulting index is controlled by a regularization parameter (λ); the G-BLUP (the prediction method most commonly used in plant and animal breeding) appears as a special case which happens when λ = 0. In this study, we present the methodology and demonstrate (using two wheat data sets with phenotypes collected in ten different environments) that the SSI can achieve significant (anywhere between 5-10%) gains in prediction accuracy relative to the G-BLUP.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 939
Author(s):  
Rosario Schiano Lo Moriello ◽  
Davide Ruggiero ◽  
Leopoldo Angrisani ◽  
Enzo Caputo ◽  
Francesco de Pandi ◽  
...  

Thanks to their peculiar features, organic transistors are proving to be a valuable alternative to traditional semiconducting devices in several application fields; however, before releasing their exploitation, simulating their behaviour through adequate circuital models could be advisable during the design stage of electronic circuits and/or boards. Consequently, accurately extracting the parameter value of those models is fundamental to developing useful libraries for hardware design environments. To face the considered problem, the authors present a method based on successive application of Single- and Multi-Objective Evolutionary Algorithm for the optimal tuning of model parameters of organic transistors on thin film (OTFT). In particular, parameters are first roughly estimated to assure the best fit with the experimental transfer characteristics; the estimates are successively refined through the multi-objective strategy by also matching the values of the experimental mobility. The performance of the method has been assessed by estimating the parameters value of both P-type and N-type OTFTs characterized by different values of channel lengths; the obtained results evidence that the proposed method can obtain suitable parameters values for all the considered channel lengths.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ellen Brooks-Pollock ◽  
Hannah Christensen ◽  
Adam Trickey ◽  
Gibran Hemani ◽  
Emily Nixon ◽  
...  

AbstractControlling COVID-19 transmission in universities poses challenges due to the complex social networks and potential for asymptomatic spread. We developed a stochastic transmission model based on realistic mixing patterns and evaluated alternative mitigation strategies. We predict, for plausible model parameters, that if asymptomatic cases are half as infectious as symptomatic cases, then 15% (98% Prediction Interval: 6–35%) of students could be infected during the first term without additional control measures. First year students are the main drivers of transmission with the highest infection rates, largely due to communal residences. In isolation, reducing face-to-face teaching is the most effective intervention considered, however layering multiple interventions could reduce infection rates by 75%. Fortnightly or more frequent mass testing is required to impact transmission and was not the most effective option considered. Our findings suggest that additional outbreak control measures should be considered for university settings.


2019 ◽  
Vol 158 ◽  
pp. 6176-6182 ◽  
Author(s):  
Zhendong Zhang ◽  
Hui Qin ◽  
Liqiang Yao ◽  
Jiantao Lu ◽  
Liangge Cheng

2018 ◽  
Vol 11 (1) ◽  
pp. 64 ◽  
Author(s):  
Kyoung-jae Kim ◽  
Kichun Lee ◽  
Hyunchul Ahn

Measuring and managing the financial sustainability of the borrowers is crucial to financial institutions for their risk management. As a result, building an effective corporate financial distress prediction model has been an important research topic for a long time. Recently, researchers are exerting themselves to improve the accuracy of financial distress prediction models by applying various business analytics approaches including statistical and artificial intelligence methods. Among them, support vector machines (SVMs) are becoming popular. SVMs require only small training samples and have little possibility of overfitting if model parameters are properly tuned. Nonetheless, SVMs generally show high prediction accuracy since it can deal with complex nonlinear patterns. Despite of these advantages, SVMs are often criticized because their architectural factors are determined by heuristics, such as the parameters of a kernel function and the subsets of appropriate features and instances. In this study, we propose globally optimized SVMs, denoted by GOSVM, a novel hybrid SVM model designed to optimize feature selection, instance selection, and kernel parameters altogether. This study introduces genetic algorithm (GA) in order to simultaneously optimize multiple heterogeneous design factors of SVMs. Our study applies the proposed model to the real-world case for predicting financial distress. Experiments show that the proposed model significantly improves the prediction accuracy of conventional SVMs.


Sign in / Sign up

Export Citation Format

Share Document