scholarly journals MgO Dispersed on Activated Carbon as Water Tolerant Catalyst for the Conversion of Ethanol into Butanol

2019 ◽  
Vol 9 (7) ◽  
pp. 1371 ◽  
Author(s):  
Stefano Cimino ◽  
Jessica Apuzzo ◽  
Luciana Lisi

MgO supported on activated carbon (AC) with a load ranging from 10% to 30% has been investigated as catalyst for the conversion of ethanol into butanol at 400 °C in a fixed bed reactor at different GHSV. Catalysts have been characterized by XRD, SEM/EDX, and N2 physisorption at 77 K. The high dispersion of MgO into the pores of the support provides strongly enhanced performance with respect to bulk MgO. MgO/AC catalysts have been also tested under wet feed conditions showing high water tolerance and significantly larger butanol yield with respect to an alumina supported Ru/MgO catalyst. After wet operation, the increased surface area of the catalyst leads to better performance once dry feed conditions are restored.

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2047 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Paweł Kazimierski ◽  
Maciej Klein ◽  
Dariusz Kardaś ◽  
Justyna Łuczak

Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The effect of the activation process on the surface area, pore volume, structure and composition of the biochar was examined. The samples with the highest surface area (1349.6 and 1194.4 m2/g for straw and wood activated carbons, respectively) were obtained when the chemical activation with KOH solution was applied. The sample with the highest surface area was used as an adsorbent for model wastewater contamination removal.


2010 ◽  
Vol 658 ◽  
pp. 113-116 ◽  
Author(s):  
Chiravoot Pechyen ◽  
Duangdao Aht-Ong ◽  
Viboon Sricharoenchaikul ◽  
Duangduen Atong

Pyrolysis is one form of energy recovery process which has the potential to generate oil, gas and char products. The char becomes an attractive by-product, with applications including production of activated carbons that is useful as a sorbent for wastewater treatment and air pollution control. In this work, activated carbon was prepared from Coffee (Coffea Arabica L.) bean waste collected from local coffee houses. Char from pyrolysis of coffee bean waste at 900 °C contained high fixed carbon and low volatile content that was favorable for subsequent activation process. The char was activated via chemical treatment with sodium hydroxide (NaOH) at five different NaOH : char ratios (1:1, 2:1, 3:1, 4:1 and 5:1) and heat treated at 400°C for 15 minutes using a fixed bed reactor under nitrogen atmosphere with a flow rate of 100 mL/min. Result shows that NaOH works effectively as dehydration reagent around 400°C. Under the experimental conditions investigated, impregnation ratio of 1.0 was found to be suitable for producing high-surface area activated carbon. The surface area and total pore volume of activated carbons, which were determined by application of the Brunauer–Emmett–Teller (BET) and t-plot methods, were achieved as high as 802 m2/g and 0.80 cm3/g, respectively. The chemically activated carbons were found to be mainly type I carbons and had high adsorption property (Methylene blue adsorption = 284 mg/g and Iodine number = 1070 mg/g).


Fuel ◽  
1996 ◽  
Vol 75 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Ajay K. Dalai ◽  
Jasimuz Zaman ◽  
E.Stanley Hall ◽  
Eric L. Tollefson

2012 ◽  
Vol 1 (3) ◽  
pp. 81 ◽  
Author(s):  
A Buasri ◽  
B Ksapabutr ◽  
M Panapoy ◽  
N Chaiyut

: The continuous production of ethyl ester was studied by using a steady-state fixed bed reactor (FBR). Transesterification of palm stearin (PS) and waste cooking palm oil (WCPO) with ethanol in the presence of calcium oxide impregnated palm shell activated carbon (CaO/PSAC) solid catalyst was investigated. This work was determined the optimum conditions for the production of ethyl ester from PS and WCPO in order to obtain fatty acid ethyl ester (FAEE) with the highest yield. The effects of reaction variables such as residence time, ethanol/oil molar ratio, reaction temperature, catalyst bed height and reusability of catalyst in a reactor system on the yield of biodiesel were considered. The optimum conditions were the residence time 2-3 h, ethanol/oil molar ratio 16-20, reaction temperature at 800C, and catalyst bed height 300 mm which yielded 89.46% and 83.32% of the PS and WCPO conversion, respectively. CaO/PSAC could be used repeatedly for 4 times without any activation treatment and no obvious activity loss was observed. It has potential for industrial application in the transesterification of triglyceride (TG). The fuel properties of biodiesel were determined. Keywords: biodiesel, calcium oxide, ethyl ester, fixed bed reactor, palm shell activated carbon


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1027
Author(s):  
Binxiang Cai ◽  
Huazhang Liu ◽  
Wenfeng Han

Fe2O3-based catalysts were prepared by solution combustion synthesis (SCS) with metal nitrates (Fe, K, Al, Ca) as the precursors and glycine as the fuel. The activities of catalysts were evaluated in terms of ammonia synthesis reaction rate in a fixed bed reactor similar to the industrial reactors. The results indicate that the precursor of catalyst prepared by SCS is Fe2O3 which facilitates the high dispersion of promoters to provide high activity. The catalysts exhibit higher activity for ammonia synthesis than that of traditional catalysts, and the reaction rate reaches 138.5 mmol g−1 h−1. Fe2O3 prepared by SCS could be favorable precursor for ammonia synthesis catalyst. The present study provides a pathway to prepare catalyst for ammonia synthesis.


2019 ◽  
Vol 3 (1) ◽  
pp. 31 ◽  
Author(s):  
Abhishek Nambiar ◽  
Ponnivalavan Babu ◽  
Praveen Linga

Water is a key resource for sustainable development and plays a crucial role in human development. Desalination is one of the most promising technologies to mitigate the emerging water crisis. Thermal desalination and reverse osmosis are two of the most widely employed desalination technologies in the world. However, these technologies are energy intensive. Clathrate-hydrate-based desalination (HyDesal) is a potential energy-efficient desalination technology to strengthen the energy–water nexus. In our previous study, we proposed a ColdEn-HyDesal process utilizing waste Liquefied Natural Gas (LNG) cold energy based on a fixed-bed reactor configuration. In this study, we evaluated the effect of 10% propane in three different gas mixtures, namely, nitrogen (G1), argon (G2), and carbon dioxide (G3), as hydrate formers for the HyDesal process. The achieved water recovery was very low (~2%) in the presence of NaCl in the solution for gas mixtures G1 and G2. However, high water recovery and faster kinetics were achieved with the G3 mixture. To improve the water recovery and kinetics of hydrate formation for the G2 gas mixture, the effect of sodium dodecyl sulfate (SDS) was evaluated. The addition of SDS did improve the kinetics and water recovery significantly.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3195 ◽  
Author(s):  
Kathleen Dupre ◽  
Emily Ryan ◽  
Azat Suleimenov ◽  
Jillian Goldfarb

The volatility of crude oil prices incentivizes the use of domestic alternative fossil fuel sources such as oil shale. For ex situ oil shale retorting to be economically and environmentally viable, we must convert the copious amounts of semi-coke waste to an environmentally benign, useable by-product. Using acid and acid + base treatments, we increased the surface area of the semi-coke samples from 15 m2/g (pyrolyzed semi-coke) to upwards of 150 m2/g for hydrochloric acid washed semi-coke. This enhancement in porosity and surface area is accomplished without high temperature treatment, which lowers the overall energy required for such a conversion. XRD analysis confirms that chemical treatments removed the majority of dolomite while retaining other carbonate minerals and maintaining carbon contents of approximately 10%, which is greater than many fly ashes that are commonly used as sorbent materials. SO2 gas adsorption isotherm analysis determined that a double HCl treatment of semi-coke produces sorbents for flue gas treatment with higher SO2 capacities than commonly used fly ash adsorbents. Computational fluid dynamics modeling indicates that the sorbent material could be used in a fixed bed reactor to efficiently remove SO2 from the gas stream.


2020 ◽  
Vol 400 ◽  
pp. 159-169
Author(s):  
Sara F.H. Tasfy ◽  
Noor Asmawati Mohd Zabidi ◽  
Maizatul Shima Shaharun ◽  
Duvvria Subbarao

Bimetallic Cu-ZnO-based catalyst were systematically prepared via impregnation technique under controlled synthesis conditions of active metal loading, ratio of active metal Cu:Zn and synthesis pH. The effect of the synthesis condition on the performance of the Cu-ZnO supported catalysts with respect to the hydrogenation of CO2 to methanol in micro-activity fixed-bed reactor at 250°C, 2.25 MPa, and 75% H2/25%CO2 ratio. The synthesized catalysts were characterized by transmission electron microscopy (TEM) and temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO) and the surface area determination was also performed. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the synthesis parameters. Increasing of synthesis pH from 1 to 7 shows better metal particles distribution, Cu desperation of 29%, higher BET surface area as well as Cu surface area, while further increasing on pH revealed on particles agglomeration and weak metal-support interaction. In addition, increasing of the active metal loading from 5 to 15 % resulted in dramatic increase in the conversion of CO2 and methanol production while further increase caused lower catalytic performance. Moreover, catalyst with total loading of 15%, Cu:Zn ratio of 70:30 synthesized at pH of 7 exhibit higher catalytic activity of 14%, methanol selectivity of 92%, and TOF of 1.24×103 s-1 compared with other catalyst prepared under various conditions


2013 ◽  
Vol 11 (1) ◽  
pp. 569-576 ◽  
Author(s):  
Djamila Djedouani ◽  
Malika Chabani ◽  
Abdeltif Amrane ◽  
Aicha Bensmaili

Abstract Batch experiments were carried out for the adsorption of oxytetracycline (OTC) onto powdered activated carbon (PAC). The operating variables examined were the initial concentration (20–150 mg L−1) and the adsorbent concentration (0.75–1.75 g L−1). As observed increasing the initial concentration, while decreasing the adsorbent dosage, had a positive impact on the amount of OTC uptake (mg g−1). The kinetics was examined in a closed-loop fixed bed adsorber to propose an adsorption mechanism, to understand the dynamic interactions of OTC with ECA08 activated carbon and to predict its fate with time. The sorption results were analyzed using chemical and physical kinetics models. For concentrations lower than 70 mg L−1, the sorption process was found to be controlled by both surface reactions and mass transfer. The average external mass transfer coefficient and intraparticle diffusion coefficient were found to be 0.0051 min−1 and 1.97 mg g−1 min−0.5, respectively. For concentrations higher than 70 mg L−1, mass transfer became rapid and the chemical reaction at the surface of the solid phase was the rate-limiting step. The results showed that the adsorption reaction was accurately described by the pseudo-second-order model.


2014 ◽  
Vol 955-959 ◽  
pp. 2169-2172 ◽  
Author(s):  
Bing Li ◽  
Jian Ming Xue ◽  
Yue Yang Xu ◽  
Hong Liang Wang ◽  
Chun Yuan Ma ◽  
...  

Five kinds of powder activatedcarbons were studied to investigate the removal of SO2 from flue gasin a fixed bed reactor. The fractal dimension of activated carbon was determined by N2 adsorption isothermat 77Kand SO2 adsorptioncapacity was correlated with thefractal dimension. The results show thatthe activated carbons prepared from different precursors by differentactivation methods have different fractal dimension. Big differences in SO2 adsorption capacity are found between fivekinds of activated carbons. SO2 adsorption capacity increases with the fractaldimension increasing. The results indicate that the fractal dimension could be used as a indicator of SO2removal capacity on powder activated carbon.


Sign in / Sign up

Export Citation Format

Share Document