scholarly journals Deep Learning System for Vehicular Re-Routing and Congestion Avoidance

2019 ◽  
Vol 9 (13) ◽  
pp. 2717 ◽  
Author(s):  
Pedro Perez-Murueta ◽  
Alfonso Gómez-Espinosa ◽  
Cesar Cardenas ◽  
Miguel Gonzalez-Mendoza

Delays in transportation due to congestion generated by public and private transportation are common in many urban areas of the world. To make transportation systems more efficient, intelligent transportation systems (ITS) are currently being developed. One of the objectives of ITS is to detect congested areas and redirect vehicles away from them. However, most existing approaches only react once the traffic jam has occurred and, therefore, the delay has already spread to more areas of the traffic network. We propose a vehicle redirection system to avoid congestion that uses a model based on deep learning to predict the future state of the traffic network. The model uses the information obtained from the previous step to determine the zones with possible congestion, and redirects the vehicles that are about to cross them. Alternative routes are generated using the entropy-balanced k Shortest Path algorithm (EBkSP). The proposal uses information obtained in real time by a set of probe cars to detect non-recurrent congestion. The results obtained from simulations in various scenarios have shown that the proposal is capable of reducing the average travel time (ATT) by up to 19%, benefiting a maximum of 38% of the vehicles.

2014 ◽  
Vol 25 (04) ◽  
pp. 1450005 ◽  
Author(s):  
Zhengbing He ◽  
Bokui Chen ◽  
Ning Jia ◽  
Wei Guan ◽  
Benchuan Lin ◽  
...  

To alleviate traffic congestion, a variety of route guidance strategies have been proposed for intelligent transportation systems. A number of strategies are introduced and investigated on a symmetric two-route traffic network over the past decade. To evaluate the strategies in a more general scenario, this paper conducts eight prevalent strategies on an asymmetric two-route traffic network with different slowdown behaviors on alternative routes. The results show that only mean velocity feedback strategy (MVFS) is able to equalize travel time, i.e. approximate user optimality (UO); while the others fail due to incapability of establishing relations between the feedback parameters and travel time. The paper helps better understand these strategies, and suggests MVFS if the authority intends to achieve user optimality.


2020 ◽  
Vol 19 (11) ◽  
pp. 2116-2135
Author(s):  
G.V. Savin

Subject. The article considers functioning and development of process flows of transportation and logistics system of a smart city. Objectives. The study identifies factors and dependencies of the quality of human life on the organization and management of stream processes. Methods. I perform a comparative analysis of previous studies, taking into account the uniquely designed results, and the econometric analysis. Results. The study builds multiple regression models that are associated with stream processes, highlights interdependent indicators of temporary traffic and pollution that affect the indicator of life quality. However, the identified congestion indicator enables to predict the time spent in traffic jams per year for all participants of stream processes. Conclusions. The introduction of modern intelligent transportation systems as a component of the transportation and logistics system of a smart city does not fully solve the problems of congestion in cities at the current rate of urbanization and motorization. A viable solution is to develop cooperative and autonomous intelligent transportation systems based on the logistics approach. This will ensure control over congestion, the reduction of which will contribute to improving the life quality of people in urban areas.


2021 ◽  
Vol 13 (4) ◽  
pp. 544
Author(s):  
Guohao Zhang ◽  
Bing Xu ◽  
Hoi-Fung Ng ◽  
Li-Ta Hsu

Accurate localization of road agents (GNSS receivers) is the basis of intelligent transportation systems, which is still difficult to achieve for GNSS positioning in urban areas due to the signal interferences from buildings. Various collaborative positioning techniques were recently developed to improve the positioning performance by the aid from neighboring agents. However, it is still challenging to study their performances comprehensively. The GNSS measurement error behavior is complicated in urban areas and unable to be represented by naive models. On the other hand, real experiments requiring numbers of devices are difficult to conduct, especially for a large-scale test. Therefore, a GNSS realistic urban measurement simulator is developed to provide measurements for collaborative positioning studies. The proposed simulator employs a ray-tracing technique searching for all possible interferences in the urban area. Then, it categorizes them into direct, reflected, diffracted, and multipath signal to simulate the pseudorange, C/N0, and Doppler shift measurements correspondingly. The performance of the proposed simulator is validated through real experimental comparisons with different scenarios based on commercial-grade receivers. The proposed simulator is also applied with different positioning algorithms, which verifies it is sophisticated enough for the collaborative positioning studies in the urban area.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-37
Author(s):  
Azzedine Boukerche ◽  
Xiren Ma

Vision-based Automated Vehicle Recognition (VAVR) has attracted considerable attention recently. Particularly given the reliance on emerging deep learning methods, which have powerful feature extraction and pattern learning abilities, vehicle recognition has made significant progress. VAVR is an essential part of Intelligent Transportation Systems. The VAVR system can fast and accurately locate a target vehicle, which significantly helps improve regional security. A comprehensive VAVR system contains three components: Vehicle Detection (VD), Vehicle Make and Model Recognition (VMMR), and Vehicle Re-identification (VRe-ID). These components perform coarse-to-fine recognition tasks in three steps. In this article, we conduct a thorough review and comparison of the state-of-the-art deep learning--based models proposed for VAVR. We present a detailed introduction to different vehicle recognition datasets used for a comprehensive evaluation of the proposed models. We also critically discuss the major challenges and future research trends involved in each task. Finally, we summarize the characteristics of the methods for each task. Our comprehensive model analysis will help researchers that are interested in VD, VMMR, and VRe-ID and provide them with possible directions to solve current challenges and further improve the performance and robustness of models.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1136
Author(s):  
David Augusto Ribeiro ◽  
Juan Casavílca Silva ◽  
Renata Lopes Rosa ◽  
Muhammad Saadi ◽  
Shahid Mumtaz ◽  
...  

Light field (LF) imaging has multi-view properties that help to create many applications that include auto-refocusing, depth estimation and 3D reconstruction of images, which are required particularly for intelligent transportation systems (ITSs). However, cameras can present a limited angular resolution, becoming a bottleneck in vision applications. Thus, there is a challenge to incorporate angular data due to disparities in the LF images. In recent years, different machine learning algorithms have been applied to both image processing and ITS research areas for different purposes. In this work, a Lightweight Deformable Deep Learning Framework is implemented, in which the problem of disparity into LF images is treated. To this end, an angular alignment module and a soft activation function into the Convolutional Neural Network (CNN) are implemented. For performance assessment, the proposed solution is compared with recent state-of-the-art methods using different LF datasets, each one with specific characteristics. Experimental results demonstrated that the proposed solution achieved a better performance than the other methods. The image quality results obtained outperform state-of-the-art LF image reconstruction methods. Furthermore, our model presents a lower computational complexity, decreasing the execution time.


Author(s):  
Kyu-Ok Kim ◽  
L. R. Rilett

In recent years, microsimulation has become increasingly important in transportation system modeling. A potential issue is whether these models adequately represent reality and whether enough data exist with which to calibrate these models. There has been rapid deployment of intelligent transportation system (ITS) technologies in most urban areas of North America in the last 10 years. While ITSs are developed primarily for real-time traffic operations, the data are typically archived and available for traffic microsimulation calibration. A methodology, based on the sequential simplex algorithm, that uses ITS data to calibrate microsimulation models is presented. The test bed is a 23-km section of Interstate 10 in Houston, Texas. Two microsimulation models, CORSIM and TRANSIMS, were calibrated for two different demand matrices and three periods (morning peak, evening peak, and off-peak). It was found for the morning peak that the simplex algorithm had better results then either the default values or a simple, manual calibration. As the level of congestion decreased, the effectiveness of the simplex approach also decreased, as compared with standard techniques.


2021 ◽  
Vol 13 (12) ◽  
pp. 306
Author(s):  
Ahmed Dirir ◽  
Henry Ignatious ◽  
Hesham Elsayed ◽  
Manzoor Khan ◽  
Mohammed Adib ◽  
...  

Object counting is an active research area that gained more attention in the past few years. In smart cities, vehicle counting plays a crucial role in urban planning and management of the Intelligent Transportation Systems (ITS). Several approaches have been proposed in the literature to address this problem. However, the resulting detection accuracy is still not adequate. This paper proposes an efficient approach that uses deep learning concepts and correlation filters for multi-object counting and tracking. The performance of the proposed system is evaluated using a dataset consisting of 16 videos with different features to examine the impact of object density, image quality, angle of view, and speed of motion towards system accuracy. Performance evaluation exhibits promising results in normal traffic scenarios and adverse weather conditions. Moreover, the proposed approach outperforms the performance of two recent approaches from the literature.


2020 ◽  
Vol 10 (18) ◽  
pp. 6306 ◽  
Author(s):  
Luke Butler ◽  
Tan Yigitcanlar ◽  
Alexander Paz

Transportation disadvantage is about the difficulty accessing mobility services required to complete activities associated with employment, shopping, business, essential needs, and recreation. Technological innovations in the field of smart mobility have been identified as a potential solution to help individuals overcome issues associated with transportation disadvantage. This paper aims to provide a consolidated understanding on how smart mobility innovations can contribute to alleviate transportation disadvantage. A systematic literature review is completed, and a conceptual framework is developed to provide the required information to address transportation disadvantage. The results are categorized under the physical, economic, spatial, temporal, psychological, information, and institutional dimensions of transportation disadvantage. The study findings reveal that: (a) Primary smart mobility innovations identified in the literature are demand responsive transportation, shared transportation, intelligent transportation systems, electric mobility, autonomous vehicles, and Mobility-as-a-Services. (b) Smart mobility innovations could benefit urban areas by improving accessibility, efficiency, coverage, flexibility, safety, and the overall integration of the transportation system. (c) Smart mobility innovations have the potential to contribute to the alleviation of transportation disadvantage. (d) Mobility-as-a-Service has high potential to alleviate transportation disadvantage primarily due to its ability to integrate a wide-range of services.


Sign in / Sign up

Export Citation Format

Share Document