scholarly journals An Experimental Study on Mechanical and Thermal Insulation Properties of Rubberized Concrete Including Its Microstructure

2019 ◽  
Vol 9 (14) ◽  
pp. 2943
Author(s):  
Jiaqi Guo ◽  
Meng Huang ◽  
Shanxiu Huang ◽  
Sheng Wang

This study aimed to investigate the effects of the size and weight content of waste rubber particles on the relevant performances of rubberized concrete. First, the fine aggregates were partially replaced by rubber particles of different sizes to produce rubberized concrete. Secondly, the mechanical and thermal insulation properties of rubberized concrete were investigated. Finally, microstructural analyses of rubberized concrete including scanning electronic microscope (SEM) and energy distribution spectroscopy (EDS) were examined. Experimental results indicated that uniaxial compressive strength of rubberized concrete was reduced, while the peak strain was gradually increased and thermal insulation properties were improved with the increase of rubber content or decrease of rubber particle size. In addition, rubber particles affected the failure modes, endowing concrete with weak brittleness and strong cracking resistance. Additionally, it was observed that the interfacial adhesion between the matrix rubber and the aggregates was weak under SEM, which seemed to be a key factor that reduced the strength of rubberized concrete.

2011 ◽  
Vol 243-249 ◽  
pp. 4125-4130 ◽  
Author(s):  
Shuai Tian ◽  
Tong Zhang ◽  
Ye Li

This paper studies the optimum proportion of rubber-particles in rubberized concrete for road, tests the impact of 12 modifiers and their modified processes in rubberized concrete and discusses the function mechanism of the modifiers in rubberized concrete. Research indicates: the optimum proportion of rubber-particles in rubberized concrete for road is low mix-proportion (volume ratio<5%); inorganic salt as modifier can markedly enhance the bonding strength between rubber-particles used in road and cement and improve the physical properties of rubberized concrete, among which CaCl2 produces the most effect; but organic solution, acidic or alkaline solutions are not fit to be used as modifiers in rubberized concrete for road.


2016 ◽  
Vol 36 (7) ◽  
pp. 695-704 ◽  
Author(s):  
Yuhui Ao ◽  
Fang Feng ◽  
Huixuan Zhang

Abstract The fracture behavior and deformation mechanism of polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) were studied by scanning electron microscopy and transmission electron microscopy analyses. The deformation mechanism was investigated under different conditions. Voids were seen under all the conditions because of matrix shear yielding, indicating that rubber particle cavitation took place during the blend fracture process; moreover, the void size and density increased as the fracture surface was approached. However, the void density and extent of elongation of the rubber particles in the deformation zone decreased with increasing test speed rate. Many voids were positioned in the rubber particles, confirming that matrix shear yielding initiated by rubber particle cavitation was the main deformation mechanism during ductile fracture in the matrix.


2018 ◽  
Vol 926 ◽  
pp. 109-114
Author(s):  
Li Wang ◽  
Ben Dong Zhao

Lots of waste rubber is being produced in the world and the utilization of it not only mitigate environmental impacts caused by waste rubber disposal but also enhance sustainable development. As a result, rubberized concrete, by incorporation of waste rubber into concrete, should be considered as one of the effective strategies to take advantage of waste rubber. However, problems such as low strengths, weak adhesion between rubber particles and cement pastes, and undesirable pore structures associated with rubberized concrete should be pay more attention to. In this study, the effect of replacement fine aggregate with rubber particles on rheological and mechanical properties of concrete containing CaCO3 nanoparticles was examined through slump, compressive and flexural strength tests. Rubber particles were employed to replace the fine aggregate equally by volume while CaCO3 nanoparticles were used as an equal part of binder by weight. Different sizes and volume contents of rubber particles were evaluated as well as different weight contents of CaCO3 nanoparticles. In addition, corresponding tests were also performed to evaluate the effect of CaCO3 nanoparticles in comparison to concrete specimens without CaCO3 nanoparticles. The results showed that replacement fine aggregates with rubber particles had some influence on the mechanical properties of rubberized concrete, resulting in undesirable findings in terms of compressive and flexural strengths. However, the incorporation of CaCO3 nanoparticles improved mechanical properties of rubberized concrete. Regarding slump test, the rubberized concrete without CaCO3 nanoparticles showed better performance. Considering rheological and mechanical properties, rubberized concrete with 1% CaCO3 nanoparticles presented acceptable results.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4064 ◽  
Author(s):  
Jing Lv ◽  
Tianhua Zhou ◽  
Qiang Du ◽  
Kunlun Li ◽  
Kai Sun

The recycling of waste tires in lightweight aggregate concrete (LC) would achieve huge environmental and societal benefits, but the effects of rubber particles on the partial properties of LC are not clear (e.g., the stress–strain relationship). In this paper, uniaxial compressive experiments were conducted to evaluate the stress–strain relationship of self-compacting rubber lightweight aggregate concrete (SCRLC). Rubber particles were used to replace sand by volume, and substitution percentages of 0%, 10%, 20%, 30%, 40%, and 50% were set as influence factors. Experimental results indicate that with increased rubber particles substitution percentage, the cubic compressive strength and axial compressive strength of SCRLC decreased, while the failure modes of SCRLC prism specimens gradually changed from brittle to ductile failure. As the rubber particles substitution percentage increased from 0% to 50%, the peak strain of SCRLC increased whereas peak stress, elastic modulus, and peak secant modulus of SCRLC deceased, the descending stage of stress–strain curves became softer. The rubber particles substitution percentage of 30% was the critical point at which an obvious change in the properties of SCRLC occurred. Based on the data collected from experimental studies, a predictive model for SCRLC was established and a further prediction of the SCRLC stress–strain relationship was given.


Author(s):  
Ling-Yun Feng ◽  
Ai-Jiu Chen ◽  
Han-Dong Liu

AbstractRubberized concrete is an environmentally friendly building material that mixes rubber particles from old automobile tires into normal concrete in place of fine aggregate. The addition of rubber particles can improve the abrasion resistance of normal concrete observably. It has a good application prospect in hydraulic engineering, especially in the concrete building parts with high abrasion resistance. However, there are few experimental studies on the abrasion resistance of rubberized concrete, and the influence law and mechanism of rubber particles on the abrasion resistance of concrete are not understood. In this paper, the abrasion resistance of rubberized concrete is studied using the underwater-steel-ball method. The results show that rubber particles increase the slump of concrete mixtures. The abrasion resistance of rubberized concrete increases significantly with increasing rubber particle content, whereas the compressive strength decreases linearly. For the same rubber particle size and content, the abrasion resistance of rubberized concrete positively correlates with compressive strength and larger rubber particles significantly improve the abrasion resistance. Rubber particle content is the factor that most strongly affects abrasion resistance of rubberized concrete, followed by the compressive strength. Rubber particle pretreatment methods of NaOH + KH570 can significantly improve the abrasion resistance of rubberized concrete.


2020 ◽  
Vol 12 (9) ◽  
pp. 1371-1380
Author(s):  
Yanhua Liu ◽  
Shiyu Tong ◽  
Qingxin Ren

In order to study the behavior of rubberized concrete-filled steel tubular (RuCFST) stub columns, an innovative composite member with steel tube and concrete filled with rubber particles was made. Twenty-four RuCFST stub columns were tested, in which six conventional CFST stub columns were prepared for comparison. The effects of changing rubber particle size (in the range of 1–2 mm and 2–5 mm) and rubber replacement ratio (0%, 10%, 20% replacement of sand) were made to discover the characteristics of the columns. The tested RuCFST stub columns displayed a local buckling similar to the conventional CFST stub columns. The tested results are compared with the predicted results of finite element analysis and the existing codes of CFST. Generally, the agreement between the predictions and results are reasonable.


Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 155 ◽  
Author(s):  
Machiel van Essen ◽  
Esther Montrée ◽  
Menno Houben ◽  
Zandrie Borneman ◽  
Kitty Nijmeijer

Metal-organic frameworks (MOFs) as additives in mixed matrix membranes (MMMs) for gas separation have gained significant attention over the past decades. Many design parameters have been investigated for MOF based MMMs, but the spatial distribution of the MOF throughout MMMs lacks investigation. Therefore, magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 (ZIF−8) in Matrimid MMMs were synthesized and investigated by means of their N2 and CO2 permeability. Magnetic ZIF−8 (m–ZIF−8) was synthesized by incorporating Fe3O4 in the ZIF−8 structure. The presence of Fe3O4 in m–ZIF−8 showed a decrease in surface area and N2 and CO2 uptake, with respect to pure ZIF−8. Alignment of m–ZIF−8 in Matrimid showed the presence of enriched pathways of m–ZIF−8 through the MMMs. At 10 wt.% m–ZIF−8 incorporation, no effect of alignment was observed for the N2 and CO2 permeability, which was ascribed anon-ideal tortuous alignment. However, alignment of 20 wt.% m–ZIF−8 in Matrimid showed to increase the CO2 diffusivity and permeability (19%) at 7 bar, while no loss in ideal selectivity was observed, with respect to homogeneously dispersed m–ZIF−8 membranes. Thus, the alignment of MOF particles throughout the matrix was shown to enhance the CO2 permeability at a certain weight content of MOF.


2020 ◽  
Vol 850 ◽  
pp. 107-111
Author(s):  
Laimonis Mālers ◽  
Agnija Cirvele

Functional properties of composite material based on mechanically grinded scrap tires with different particle size of fractioned crumb and polyurethane type polymer binder were investigated to estimate influence of rubber particles size and content on composite material properties (Shore C hardness, compressive stress at 10 % deformation, tensile strength, elastic modulus and elongation at break, apparent density). Optimization possibilities of composite material consisting of rubber particles with different sizes or fractions were investigated. The obtained results show that variation of composition of the composite material by changing size of rubber granulate have definite influence on selected properties of the material. Purposeful selection and mutual combination of rubber particles size included in material can ensure desirable and predictable mechanical properties of composite material.


2018 ◽  
Vol 251 ◽  
pp. 02044
Author(s):  
Filip Grzymski ◽  
Dorota Marcinczak ◽  
Tomasz Trapko ◽  
Michał Musiał

FRCM (Fabric Reinforced Cementitious Matrix) composites are the next stage of development of composite structural reinforcement after FRP (Fibre Reinforced Polymers) composites. The main element that distinguishes the newer FRCM system is the matrix of the composite – mineral matrix instead of epoxy resin. Changes in the structure of the composite, resulting from the change of the matrix, have a big impact on its work mechanisms. This paper discusses FRCM composites and shows its effectiveness in reinforced concrete elements strengthening. The basic information on FRCM mesh fibres material differences and composite failure modes are given. Current trends and directions of composite structural strengthening and the latest research in the area of increasing FRCM composite strengthening effectiveness, that are being conducted by the authors, are presented.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ankang Liu ◽  
Bing Wang ◽  
Fei Li

Purpose This paper aims to study the effect of elevated temperature on the compression behaviour of carbon fibre polyphenylene sulphide (CF/PPS) laminates notched and unnotched specimens made by film stacking method (FSM). Design/methodology/approach The surface of CF was coated with a silane coupling agent to form an effective transition layer with PPS, so as to enhance the interfacial interaction between CF and PPS. Considering the influence of fabrication pressure, forming temperature and cooling rate on the properties of laminates to obtain a reasonable preparation process. Conducting a compressive experiment of notched and unnotched specimens at different temperatures, which failure modes were examined by scanning electron microscope and stereo microscope. Findings The experimental observations highlight that with the increase of temperature, the transition failure mode from fibre broken to kink-band appeared in unnotched specimens, which were closely attributed to the matrix state. The notched specimens appeared more complex failure mode, which can be attributed to the joint effect of temperature and opening hole. Research implications A simple way of FSM for composite material laminates has been developed by using woven CF and PPS films. Originality/value The outcome of this study will help to understand the compression response mechanism of composite materials made by FSM at different temperature.


Sign in / Sign up

Export Citation Format

Share Document