Effect of Coarse Recycled Aggregate on Failure Strength for Asphalt Mixture Using Experimental and DEM Method

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1234
Author(s):  
Yongsheng Yao ◽  
Jue Li ◽  
Chenghao Liang ◽  
Xin Hu

Coarse aggregate is the major part of asphalt mixture, and plays an essential role in mechanical performance of pavement structure. However, the use of poor-quality coarse recycled aggregate (CRA) reduces the strength and stability of the aggregate skeleton. It is a challenge to predict accurately the influence of CRA on the performance of asphalt mixture. In this study, both a uniaxial compression test and a direct tensile test were carried out to evaluate the failure strength of asphalt concrete with four CRA content. The discrete element method (DEM) was applied to simulate the specimen of asphalt concrete considering the distribution and properties of CRA. The results showed that temperature and loading rate have a significant influence on failure strength, especially when the CRA content was more than 20%. With the increase of CRA content, both cohesion force and internal friction angle were gradually weakened. The proposed model can be used to predict the failure strength of asphalt mixture, since both experimental and simulated results had a high consistency and repeatability. With the decrease of CRA strength, the nominal cohesion force of the specimen decreased, while the internal friction angle increased.

2011 ◽  
Vol 90-93 ◽  
pp. 41-43
Author(s):  
Hong Liang ◽  
Yan Wang ◽  
Tian Ping Zhou ◽  
Zhen Tao Zhang ◽  
Zhi Gang Li ◽  
...  

Abstract. Silt in some areas of our country is very extensive, its distribution is different from the cohesive soil, or sand soil, has unique engineering characteristic. Silt regional characteristics make it has many unique physic-mechanical performance. This article take the G209 (Inner Mongolia Helin to Qingshuihe section) the roadbed silty soil as the study object, study its basic physics, the mechanical properties as well as the distortion and the intensity change rule under the dry-wet circulation, do a comprehensive and systematic analysis about varieties of basic engineering characteristic of the silt in the region Through the condition of dry-wet circulation of unconsolidated tri-axial tests, this article study the silt sample failure pattern under different degree of compaction, stress-strain relations and the change rule of strength. The test results show that: as cycle index less and confining pressure down, test sample is basically brittle failure, on the contrary case, it is behaved for plastic failure and stress-strain curve is close to sclerosis type; When cycle index increase gradually, the cohesion of silt reduced significantly ,with the increase of dry-wet circulation times internal friction angle is on the trend of the attenuation oscillation ; On this basis, we build the relationship expression of shear strength parameters cohesion internal friction angle and dry-wet circulation times.


2019 ◽  
Vol 9 (21) ◽  
pp. 4618
Author(s):  
Jun Gao ◽  
Faning Dang ◽  
Zongyuan Ma ◽  
Yi Xue ◽  
Jie Ren

With the rapid development of asphalt concrete core rockfill dams (ACCRDs), the construction of ultra-high asphalt concrete core rockfill dams (UACCRDs) has been improved significantly. However, the security problems of asphalt concrete core (ACC) become very prominent with the increase of dam height. The shear failure control standard and tensile failure control standard of ACC are suggested. The mechanisms of ACC that generate high shear stress and high tensile stress are investigated. Based on the definition of stress level and the transmission mechanism of arch structures, the improvement methods that reduce the high shear stress and high tensile stress of ultra-high asphalt concrete core (UACC) are proposed and investigated. The results show that the stress level of ACC can be reduced significantly by the increase of the strength parameters of ACC (failure ratio, cohesion, and internal friction angle). The following value ranges of the failure ratio, cohesion, and internal friction angle of ACC for the suitable construction of UACCRDs are recommended: Rf ≥ 0.75, C ≥ 0.30 MPa, and φ ≥ 28.5° (h = 150 m), with the growth gradient adjusted by 5%, 15%, and 5%/25 m. The tensile stress and tensile stress area can be reduced obviously by the new type of dams (curved asphalt concrete core rockfill dams (CACCRDs)). The value ranges of the curvature of CACC (k ≥ 1.0 × 10−3) for the suitable construction of UACCRDs are recommended.


2012 ◽  
Vol 598 ◽  
pp. 580-584
Author(s):  
Yi Wang ◽  
Nan Xiang Zheng ◽  
Xiao Ping Ji

In order to further reveal the shear property of asphalt mixtures, shear device self-developed was used to research the variation and impact factor of anti-shear strength, cohesion and internal friction angle of different asphalt mixture types. The results show that: Modified asphalt can effectively improve the cohesion and anti-shear strength, but little effect on the internal friction angle; the internal friction angle and anti-shear strength of SAC-16 are greater than AC-16, but the cohesion is not significant different; with the nominal size of stone increased, the internal friction angle and anti-shear strength of asphalt mixtures rose, but little change in the cohesion; with temperatures increased, the anti-shear strength and cohesion of asphalt mixtures reduced gradually, but little change in the internal friction angle.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


2015 ◽  
Vol 744-746 ◽  
pp. 593-596
Author(s):  
Yuan Meng

When calculating the dam slope failure process, traditional strength reduction method doesn't consider the difference of decay rate between cohesion and internal friction angle and discount the strength parameters for all elements. This paper uses two different reduction factors for material strength parameters, slope cohesion and internal friction angle. Based on the yield approach index criterion, we change the reduction region in time and put forward a double safety factor of dynamic local strength reduction method for engineering analysis of dam slope stability.


Author(s):  
Khelifa Harichane ◽  
Mohamed Ghrici ◽  
Said Kenai

Cohesive soils with a high plasticity index present difficulties in construction operations because they usually contain expansive clay minerals. However, the engineering properties of soils can be improved by different techniques. The aim of this paper is to study the effect of using lime, natural pozzolana or a combination of both lime and natural pozzolana on plasticity, compaction and shear strength of two clayey soils classified as CH and CL according to the unified soil classification system (USCS). The obtained results indicated that for CH class clay soil, the plasticity index decreased significantly for samples stabilized with lime. On the other hand, for the soil classified as CL class clay, a high decrease in the plasticity index value was observed for samples stabilized with natural pozzolana compared to those stabilized with lime. Also, both the cohesion and internal friction angle in lime added samples were demonstrated to increase with time. The combination of lime and natural pozzolana exhibits a significant effect on the enhancement of both the cohesion and  internal friction angle at later stages. The lime-natural pozzolana combination appears to produce higher shear strength parameters than lime or natural pozzolana used alone.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jianwei Yue ◽  
Limin Zhao ◽  
Baoxi Zhang ◽  
Qingmei Kong ◽  
Siyuan Wang ◽  
...  

The silty clay in the lower reaches of the Yellow River is characterized by loose structure, low strength, and strong capillary effect. Based on the technology of ancient glutinous rice mortar and microbial-induced calcium carbonate precipitation (MICP), experiments on optimal mass ratio of cementitious liquid to bacterial liquid and optimal concentration of cementitious liquid for MICP and improved MICP technology were carried out by measuring the production of CaCO3, and direct shear test and unconfined compressive strength test of plain silt, glutinous mixing silt, and improved silt with MICP and modified MICP were conducted. The microstructure of the reaction products of MICP and improved MICP technology were also evaluated based on scanning electron microscopy (SEM). Research results showed that the mechanical properties of silt with glutinous rice slurry were effectively improved. With the increase in the concentration of glutinous rice slurry, the strength and internal friction angle of soil samples first increased and then decreased, and the cohesion presented a linear increasing trend. When the concentration of cementitious liquid was 0.5 M and the mass ratio of cementitious liquid to bacterial liquid was 2 : 1, the amount of CaCO3 formed was the most, and the conversion rate of Ca2+ was more than 80%. The improved MICP could increase the conversion rate of Ca2+ (93.44%). An improved MICP showed that glutinous rice slurry could improve bacterial activity, increase the urease content in the bacterial solution, and promote the production of CaCO3. Silt cohesion and internal friction angle of the silt were improved by the improved MICP technology, and the strengthening effect of mechanical properties of modified MICP-reinforced soil is better than that of the MICP-reinforced soil; conventional MICP technology could also improve the soil cohesion, but the improvement in the internal friction angle was not obvious. The SEM results indicated that compared with the reaction product of MICP technology, the structure of the product of improved MICP technology is more compact, resulting in a marked reinforcement of MICP performance with glutinous rice slurry. This study provides new insights into enhancing the mechanical behaviour of MICP-treated silt in the Yellow River Basin with glutinous rice slurry.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kaisheng Chen

By embedding water content sensors and pore water pressure sensors inside the red clay slope on-site in Guiyang, Guizhou, shear tests were performed on soil samples at different depths of the slope under different weather. The changes of water content, pore water pressure, and shear strength index of the slope inside the slope under the influence of the atmosphere were tracked and tested, and the failure characteristics and evolution of the red clay slope were analyzed. It is believed that the depth of influence of the atmosphere on red clay slopes is about 0.7 m, rainfall is the most direct climatic factor leading to the instability of red clay slopes, and the evaporation effect is an important prerequisite for the catastrophe of red clay slopes. The cohesion and internal friction angle of the slope soil have a good binary quadratic function relationship with the water content and density. The water content and density can be used to calculate the cohesion and internal friction angle. Failure characteristics of red clay slopes: the overall instability failure is less, mainly surface failure represented by gullies and weathering and spalling, and then gradually evolved into shallow instability failure represented by collapse and slump. The damage evolution law is as follows: splash corrosion and surface corrosion stage⟶ fracture development stage⟶ gully formation stage⟶ gully development through stage⟶ local collapse stage⟶ slope foot collapse stage.


Sign in / Sign up

Export Citation Format

Share Document