scholarly journals A System for Controlling and Monitoring IoT Applications

2018 ◽  
Vol 1 (3) ◽  
pp. 26 ◽  
Author(s):  
Zebenzui Lima ◽  
Hugo García-Vázquez ◽  
Raúl Rodríguez ◽  
Sunil Khemchandani ◽  
Fortunato Dualibe ◽  
...  

In this work, the design and implementation of an open source software and hardware system for Internet of Things (IoT) applications is presented. This system permits the remote monitoring of supplied data from sensors and webcams and the control of different devices such as actuators, servomotors and LEDs. The parameters which have been monitored are brightness, temperature and relative humidity all of which constitute possible environmental factors. The control and monitoring of the installation is realised through a server which is managed by an administrator. The device which rules the installation is a Raspberry Pi, a small and powerful micro-computer in a single board with low consumption, low cost and reconfigurability.

Ergodesign ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 19-24
Author(s):  
Igor Pestov ◽  
Polina Shinkareva ◽  
Sofia Kosheleva ◽  
Maxim Burmistrov

This article aims to develop a hardware-software system for access control and management based on the hardware platforms Arduino Uno and Raspberry Pi. The developed software and hardware system is designed to collect data and store them in the database. The presented complex can be carried and used anywhere, which explains its high mobility.


2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 726
Author(s):  
Francisco J. Gómez-Uceda ◽  
José Ramirez-Faz ◽  
Marta Varo-Martinez ◽  
Luis Manuel Fernández-Ahumada

In this work, an omnidirectional sensor that enables identification of the direction of the celestial sphere with maximum solar irradiance is presented. The sensor, based on instantaneous measurements, functions as a position server for dual-axis solar trackers in photovoltaic plants. The proposed device has been developed with free software and hardware, which makes it a pioneering solution because it is open and accessible as well as capable of being improved by the scientific community, thereby contributing to the rapid advancement of technology. In addition, the device includes an algorithm developed ex professo that makes it possible to predetermine the regions of the celestial sphere for which, according to the geometric characteristics of the PV plant, there would be shading between the panels. In this way, solar trackers do not have to locate the Sun’s position at all times according to astronomical models, while taking into account factors such as shadows or cloudiness that also affect levels of incident irradiance on solar collectors. Therefore, with this device, it is possible to provide photovoltaic plants with dual-axis solar tracking with a low-cost device that helps to optimise the trajectory of the trackers and, consequently, their radiative capture and energy production.


Author(s):  
Kunal.S. Pawar ◽  
Pravin.C. Latane

With the development in the education system, considering the latest current online exam system, a new projection of online exam system based on Raspberry pi IOT is proposed, and the key implementation techniques and methods are also described. The growing ubiquity of wireless, RFID mobile and sensor devices has provide a promising opportunity to build the powerful examination systems and applications by Internet of Things (IoT). A wide range of IoT applications have been developed in recent years. In an effort to understand the development of IoT in online examination, here we propose the current research of IoT, IOT key enabling technologies, major IoT applications in online examination and identifies research trends and challenges. Here we initially all the examine details are stored in the server. Then By applying face recognition (in Open CV based) technique, you can start the online examination. Due to sometime unwanted person also enter to wright the exam, so this is the best way to identified any culprits are found or not.


Author(s):  
Bin Lin

The Internet of Things is another information technology revolution and industrial wave after computer, Internet and mobile communication. It is becoming a key foundation and an important engine for the green, intelligent and sustainable development of economic society. The new networked intelligent production mode characterized by the integration innovation of the Internet of Things is shaping the core competitiveness of the future manufacturing industry. The application of sensor network data positioning and monitoring technology based on the Internet of Things in industry, power and other industries is a hot field for the development of the Internet of Things. Sensor network processing and industrial applications are becoming increasingly complex, and new features have appeared in the sensor network scale and infrastructure in these fields. Therefore, the Internet of Things perception data processing has become a research hotspot in the deep integration process between industry and the Internet of Things. This paper deeply analyzes and summarizes the characteristics of sensor network perception data under the new trend of the Internet of Things as well as the research on location monitoring technology, and makes in-depth exploration from the release and location monitoring of sensor network perception data of the Internet of Things. Sensor network technology integrated sensor technology, micro-electromechanical system technology, wireless communication technology, embedded computing technology and distributed information processing technology in one, with easy layout, easy control, low power consumption, flexible communication, low cost and other characteristics. Therefore, based on the release and location monitoring technologies of sensor network data based on the Internet of Things in different applications, this paper studies the corresponding networking technologies, energy management, data management and fusion methods. Standardization system in wireless sensor network low cost, and convenient data management needs, design the iot oriented middleware, and develops the software and hardware system, the application demonstration, the results show that the design of wireless sensor network based on iot data monitoring and positioning technology is better meet the application requirements, fine convenient integration of software and hardware, and standardized requirements and suitable for promotion.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1489 ◽  
Author(s):  
Rafael Fayos-Jordan ◽  
Santiago Felici-Castell ◽  
Jaume Segura-Garcia ◽  
Adolfo Pastor-Aparicio ◽  
Jesus Lopez-Ballester

The Internet of Things (IoT) is a network widely used with the purpose of connecting almost everything, everywhere to the Internet. To cope with this goal, low cost nodes are being used; otherwise, it would be very expensive to expand so fast. These networks are set up with small distributed devices (nodes) that have a power supply, processing unit, memory, sensors, and wireless communications. In the market, we can find different alternatives for these devices, such as small board computers (SBCs), e.g., Raspberry Pi (RPi)), with different features. Usually these devices run a coarse version of a Linux operating system. Nevertheless, there are many scenarios that require enhanced computational power that these nodes alone are unable to provide. In this context, we need to introduce a kind of collaboration among the devices to overcome their constraints. We based our solution in a combination of clustering techniques (building a mesh network using their wireless capabilities); at the same time we try to orchestrate the resources in order to improve their processing capabilities in an elastic computing fashion. This paradigm is called fog computing on IoT. We propose in this paper the use of cloud computing technologies, such as Linux containers, based on Docker, and a container orchestration platform (COP) to run on the top of a cluster of these nodes, but adapted to the fog computing paradigm. Notice that these technologies are open source and developed for Linux operating system. As an example, in our results we show an IoT application for soundscape monitoring as a proof of concept that it will allow us to compare different alternatives in its design and implementation; in particular, with regard to the COP selection, between Docker Swarm and Kubernetes. We conclude that using and combining these techniques, we can improve the overall computation capabilities of these IoT nodes within a fog computing paradigm.


Now-days the electronic devices play a major role in day-to-day life. Where as in case of electricity, people are using it for 24by7 as of there were of having household appliances are of electronic devices. So if there is any power loss in meantime of running any electronic devices it may leads to damage, so to predict they were of using the battery to work instant after power loss. As we know that there are different types of battery that runs with distilled water. So in this paper we would like to discuss about how to control the batteries voltage using IOT (Internet of Things). It was of having low cost and reduces the human resources and time-efficiency and cost the system used in it was of Voltmeter. It were of using the Raspberry pi for monitoring & updating the values. While they were of using Arduino, cloud for transmitting the data.


Author(s):  
Kunal Pawar ◽  
Pravin Latane

In this research we have proposed IOT based advanced Online examination using Raspberry pi for Alarm system and border security. With the event of recent education, considering the defect of current online exam system, a replacement projection of online exam system primarily based on Raspberry pi IOT is projected, and also the key implementation techniques and ways also are represented. Internet of Things (IOT) has provided a promising chance to make powerful Examination systems and applications by leverage the growing omnipresence of wireless, RFID mobile and detector devices. a large vary of IOT applications are developed in recent years. In a shot to grasp the event of IOT in on-line examination, here we tend to propose this analysis of IOT, IOT key facultative technologies, major IOT applications in on-line examination and identifies analysis trends and challenges. Here we tend to introduce all the examiner details square measure holds on within the server. Then if somebody needs to starts on-line examination, 1st they ought to apply face recognition (in Open CV based) technique. as a result of it slow unwanted person conjointly enter to Wright the examination, thus this can be the simplest thanks to known any culprits square measure found or not. Then examination enter to Wright the exam, here conjointly I am apply some security. Currently a day’s already queries square measure hold on within the on-line or any paper written copy.


Author(s):  
Francisco Vital Da Silva Júnior ◽  
Mônica Ximenes Carneiro Da Cunha ◽  
Marcílio Ferreira De Souza Júnior

Floods are responsible for a high number of human and material losses every year. Monitoring of river levels is usually performed with radar and pre-configured sensors. However, a major flood can occur quickly. This justifies the implementation of a real-time monitoring system. This work presents a hardware and software platform that uses Internet of Things (IoTFlood) to generate flood alerts to agencies responsible for monitoring by sending automatic messages about the situation of rivers. Research design involved laboratory and field scenarios, simulating floods using mockups, and later tested on the Mundaú River, state of Alagoas, Brazil, where flooding episodes have already occurred. As a result, a low-cost, modular and scalable IoT platform was achieved, where sensor data can be accessed through a web interface or smartphone, without the need for existing infrastructure at the site where the IOTFlood solution was installed using affordable hardware, open source software and free online services for the viewing of collected data.


Sign in / Sign up

Export Citation Format

Share Document