scholarly journals Monitoring Excess Exposure to Air Pollution for Professional Drivers in London Using Low-Cost Sensors

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 749
Author(s):  
Louise Bøge Frederickson ◽  
Shanon Lim ◽  
Hugo Savill Russell ◽  
Szymon Kwiatkowski ◽  
James Bonomaully ◽  
...  

In this pilot study, low-cost air pollution sensor nodes were fitted in waste removal trucks, hospital vans and taxis to record drivers’ exposure to air pollution in Central London. Particulate matter (PM 2.5 and PM 10 ), CO 2 , NO 2 , temperature and humidity were recorded in real-time with nodes containing low-cost sensors, an electrochemical gas sensor for NO 2 , an optical particle counter for PM 2.5 and PM 10 and a non-dispersive infrared (NDIR) sensor for CO 2 , temperature and relative humidity. An intervention using a pollution filter to trap PM and NO 2 was also evaluated. The measurements were compared with urban background and roadside monitoring stations at Honor Oak Park and Marylebone Road, respectively. The vehicle records show PM and NO 2 concentrations similar to Marylebone Road and a higher NO 2 -to-PM ratio than at Honor Oak Park. Drivers are exposed to elevated pollution levels relative to Honor Oak Park: 1.72 μ g m − 3 , 1.92 μ g m − 3 and 58.38 ppb for PM 2.5 , PM 10 , and NO 2 , respectively. The CO 2 levels ranged from 410 to over 4000 ppm. There is a significant difference in average concentrations of PM 2.5 and PM 10 between the vehicle types and a non-significant difference in the average concentrations measured with and without the pollution filter within the sectors. In conclusion, drivers face elevated air pollution exposure as part of their jobs.

Author(s):  
Dr. Yashoda Tammineni

It’s of great concern to observe that the capital of our country, Delhi is under the severe grip of air pollution since a couple of days sending most alarming indications even for a national emergency. The Air quality index (AQI) entered the "severe plus" or "emergency" category and the Pollution levels in Delhi peaked to a three-year high in the month of November this year. Alarmingly, the level of particulate matter (PM) in the air reached intolerable level and the real time AQI was as high as 999 at monitoring stations at many places in Delhi. The smog (smoke and fog) has reached such an intolerable state that the people are suffering from severe pulmonary disorders and the visual clearance has enormously reduced leading to road accidents and even effected the air trafficking. Until and unless the AQI comes down drastically general living conditions in Delhi seems to be next to impossible. KEYWORDS: Air quality index (AQI), PM 2.5 Pollution, PM 10 Pollution, Severe Smog, Pulmonary disorders


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0258070
Author(s):  
Ngwa Niba Rawlings ◽  
Akwah Emmanuela Ambe ◽  
Lem Ngongalah

Background Air pollution is the largest environmental health risk in the United Kingdom, and an issue of concern amongst outdoor workers. Road transport is a major source producing the largest amount of nitrogen dioxide (NO2) and ozone (O3) (as a secondary pollutant). Hundreds of vehicles enter and exit the Tidworth Camp’s main gate daily, potentially producing these pollutants. However, the air pollution exposure experienced by personnel on guard duty is unknown. This study aimed to determine and compare background NO2 and O3 levels experienced by personnel on guard duty. Methods Cross-sectional data was collected using a static sampling technic on randomly selected days of the week. Data analysis was done using IBM-SPSS-26 and a p-value of <0.05 was considered statistically significant. Results The background concentration of NO2 and O3 pollutants were within recommended limits. There was no significant difference between mean morning and afternoon exposure levels for both pollutants. However, NO2 and O3 levels were significantly higher during weekdays compared to weekends (M = -0.022, SD = 0.007, t(6) = -8.672, p <0.0001 and M = -0.016, SD = 0.008, t(6) = -5.040, p = 0.002 respectively). Both pollutants showed no significant differences in exposure levels when only weekdays were compared. NO2 levels showed a weak positive correlation during weekdays (r = 0.04) and a strong positive correlation during weekends (r = 0.96). O3 levels had a positive correlation on both weekdays and weekends; however, levels on Monday showed a negative correlation (r = -0.55). Linear regression analysis showed that outside temperature was a significant predictor of O3 levels (p = 0.026). Conclusion Personnel on guard duty experienced higher pollution levels during weekdays compared to weekends; however, air pollution levels for both pollutants were within recommended limits. Further studies are recommended over hotter months using a personal sampling technic to measure personal air pollution exposure levels in order to minimise any health and safety risks.


2020 ◽  
Author(s):  
Vilma Tapia ◽  
Kyle Steenland ◽  
Bryan Vu ◽  
Yang Liu ◽  
Vanessa Vasquez ◽  
...  

Abstract Background: There have been no studies of air pollution and mortality in Lima, Peru. We evaluate whether daily environmental PM 2.5 exposure is associated to respiratory and cardiovascular mortality in Lima during 2010 to 2016. Methods: We analyzed 86,970 deaths from respiratory and cardiovascular diseases in Lima from 2010-2016. Estimated daily PM 2.5 was assigned based on district of residence. Poisson regression was used to estimate associations between daily district-level PM 2.5 exposures and daily counts of deaths. Results: An increase in 10 µg/m 3 PM 2.5 on the day before was significantly associated with daily all-cause (respiratory and circulatory) mortality (RR 1.029; CI 95% CI: 1.01 – 1.05) across all ages and in the age group over 65 (RR 1.04; 95% CI: 1.005 – 1.09) which included 74% of all deaths. We also observed associations with circulatory deaths for all age groups (RR 1.06; 95% CI: 1.01 – 1.11), and those over 65 (RR 1.06; 95% CI 1.00 - 1.12). A borderline significant trend was seen (RR 1.05; 95% CI 0.99 – 1.06; p = 0.10) for respiratory deaths in persons aged over 65. Trends were driven by the highest quintile of exposure. Conclusions: PM 2.5 exposure is associated with daily all-cause, cardiovascular and respiratory mortality in Lima, especially for older people. Our data suggest that the existing limits on air pollution exposure are too high.


2021 ◽  
Author(s):  
Bridget Hoffmann ◽  
Juan Pablo Rud

We study labor supply decisions on days with high levels of air pollution in Mexico City's metropolitan area using hourly levels of fine particulate matter (PM 2.5) air pollution at the locality level. We document a negative, non-linear relationship between PM 2.5 levels and daily labor supply, with strong effects on days with extremely high pollution levels. On these days, the average worker experiences a reduction of around 7.5% of working hours. Workers partially compensate for lost hours by increasing their labor supply on days that follow high pollution days. We provide evidence that income constraints may play an important role in workers labor supply decisions, as we find more moderate responses among informal and low-income workers.


2013 ◽  
Vol 831 ◽  
pp. 276-281
Author(s):  
Ya Jie Ma ◽  
Zhi Jian Mei ◽  
Xiang Chuan Tian

Large-scale sensor networks are systems that a large number of high-throughput autonomous sensor nodes are distributed over wide areas. Much attention has paid to provide efficient data management in such systems. Sensor grid provides low cost and high performance computing to physical world data perceived through sensors. This article analyses the real-time sensor grid challenges on large-scale air pollution data management. A sensor grid architecture for pollution data management is proposed. The processing of the service-oriented grid management is described in psuedocode. A simulation experiment investigates the performance of the data management for such a system.


Smart Health ◽  
2021 ◽  
pp. 100241
Author(s):  
Pranvera Korto¸ci ◽  
Naser Hossein Motlagh ◽  
Martha Arbayani Zaidan ◽  
Pak Lun Fung ◽  
Samu Varjonen ◽  
...  

Author(s):  
Keith April G. Arano ◽  
Shengjing Sun ◽  
Joaquin Ordieres-Mere ◽  
and Bing Gong

This paper proposes a framework for an Air Quality Decision Support System (AQDSS), and as a proof of concept, develops an Internet of Things (IoT) application based on this framework. This application was assessed by means of a case study in the City of Madrid. We employed different sensors and combined outdoor and indoor data with spatiotemporal activity patterns to estimate the Personal Air Pollution Exposure (PAPE) of an individual. This pilot case study presents evidence that PAPE can be estimated by employing indoor air quality monitors and e-beacon technology that have not previously been used in similar studies and have the advantages of being low-cost and unobtrusive to the individual. In future work, our IoT application can be extended to include prediction models, enabling dynamic feedback about PAPE risks. Furthermore, PAPE data from this type of application could be useful for air quality policy development as well as in epidemiological studies that explore the effects of air pollution on certain diseases.


2020 ◽  
Author(s):  
Wenning Fu ◽  
Li Zou ◽  
Hongbin Xu ◽  
Xiantao Zeng ◽  
Shijiao Yan ◽  
...  

Abstract Background and Objective: An increasing amount of epidemiological original studies suggested that long-term exposure to particulate matter (PM 2.5 and PM 10 ) could be associated with the risk of myocardial infarction(MI), but the results were inconsistent. We aimed to synthesized available cohort studies to identify the association between ambient air pollution (PM 2.5 and PM 10 ) and MI risk by a meta-analysis. Methods: PubMed and Embase were searched through September 2019 to identify studies that met predetermined inclusion criterion. Reference lists from retrieved articles were also reviewed. A random-effects model was used to calculate the pooled relative risk ( RR ) and 95% confidence intervals ( CI ). Results: Twenty-two cohort studies involving 6,567,314 participants and 865,98 patients with MI were included in this systematic review. The pooled results showed that higher levels of ambient air pollution (PM 2.5 and PM 10 ) exposure were significantly associated with the risk of MI. The pooled relative ratio ( RR) for each 10-μg/m 3 increment in PM 2.5 and PM 10 were 1.20 (95% CI : 1.11–1.29), and1.03 (95% CI :1.00-1.07) respectively. Exclusion of any single study did not materially alter the combined risk estimate. Conclusions: Integrated evidence from cohort studies supports the hypothesis that long-term exposure to PM 2.5 and PM 10 as a risk factor for MI.


1970 ◽  
Vol 46 (3) ◽  
pp. 389-398 ◽  
Author(s):  
MA Rouf ◽  
M Nasiruddin ◽  
AMS Hossain ◽  
MS Islam

Dhaka City has been affecting with severe air pollution particularly by particulate matter. The ambient air quality data for particulate matter were collected during April 2002 to September 2005 at the Continuous Air Quality Monitoring Station (CAMS) located at Sangshad Bhaban, Dhaka. Data reveal that the pollution from particulate matter greatly varies with climatic condition. While the level comes down the limit value in the monsoon period (April-October), it goes beyond the limit during non-monsoon time (November-March). The latest data show that during monsoon period PM 10 concentration varies from 50 μg/m3 to 80 μg/m3 and PM 2.5 concentration from 20 μg/m3 to 60 μg/m3 and during non monsoon period PM 10 varies from 100 μg/m3 to 250 μg/m3 and PM 2.5 varies from 70 μg/m3 to 165 μg/m3. The seasonal variation clearly indicates the severe PM 10 pollution during the dry winter season and also sometime during post-monsoon season in Dhaka City. Keywords: Air pollution; PM 2.5; PM 10; Air quality DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9049 BJSIR 2011; 46(3): 389-398


2018 ◽  
Author(s):  
Francis D. Pope ◽  
Michael Gatari ◽  
David Ng’ang’a ◽  
Alexander Poynter ◽  
Rhiannon Blake

Abstract. East African countries face an increasing threat from poor air quality, stemming from rapid urbanisation, population growth and a steep rise in fuel use and motorization rates. With few air quality monitoring systems available, this study provides the much needed high temporal resolution data to investigate the concentrations of particulate matter (PM) air pollution in Kenya. Calibrated low cost optical particle counters (OPCs) were deployed in Kenya in three locations: two in the capital of Nairobi and one in a rural location in the outskirts of Nanyuki, which is upwind of Nairobi. The two Nairobi sites consist of an urban background site and a roadside site. The instruments were composed of an Alphasense OPC-N2 optical particle counter (OPC) ran with a raspberry pi low cost microcomputer, packaged in a weather proof box. Measurements were conducted over a two-month period (February–March 2017) with an intensive study period when all measurements were active at all sites lasting two weeks. When collocated, the three OPC-N2 instruments demonstrated good inter-instrument precision with a coefficient of variance of 8.8 ± 2.0 % in the PM2.5 fraction. The low cost sensors had an absolute PM mass concentration calibration using a collocated gravimetric measurement at the urban background site in Nairobi. The mean daily PM1 mass concentration measured at the urban roadside, urban background and rural background sites were 23.9, 16.1, 8.8 µg m−3. The mean daily PM2.5 mass concentration measured at the urban roadside, urban background and rural background sites were 36.6, 24.8, 13.0 µg m−3. The mean daily PM10 mass concentration measured at the urban roadside, urban background and rural background sites were 93.7, 53.0, 19.5 µg m−3. The urban measurements in Nairobi showed that particulate matter concentrations regularly exceed WHO guidelines in both the PM10 and PM2.5 size ranges. Following a Lenschow type approach we can estimate the urban and roadside increments that are applicable to Nairobi. Median urban and roadside increments are 33.1 and 43.3 µg m−3 for PM10, respectively, the median urban and roadside increments are 7.1 and 18.3 µg m−3 for PM2.5, respectively, and the median urban and roadside increments are 4.7 and 12.6 µg m−3 for PM1, respectively. These increments highlight the importance of both the urban and roadside increments to urban air pollution in Nairobi. A clear diurnal behaviour in PM mass concentration was observed at both urban sites, which peaks during the morning and evening Nairobi rush hours; this was consistent with the high measured roadside increment indicating vehicular traffic being a dominant source of particulate matter in the city, accounting for approximately 48.1, 47.5, and 57.2 % of the total particulate matter loading in the PM10, PM2.5 and PM1 size ranges, respectively. Collocated meteorological measurements at the urban sites were collected, allowing for an understanding of the location of major sources of particulate matter at the two sites. The potential problems of using low cost sensors for PM measurement without gravimetric calibration available at all sites are discussed. This study shows that calibrated low cost sensors can be used successfully to measure air pollution in cities like Nairobi. It demonstrates that low cost sensors could be used to create an affordable and reliable network to monitor air quality in cities.


Sign in / Sign up

Export Citation Format

Share Document