scholarly journals Effect of Natural Forest Fires on Regional Weather Conditions in Siberia

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1133
Author(s):  
Alexander Kirsanov ◽  
Inna Rozinkina ◽  
Gdaliy Rivin ◽  
Denis Zakharchenko ◽  
Alexander Olchev

Effects of forest fires on regional weather conditions were analyzed for Central and Eastern Siberia after warm and dry weather conditions in summer 2019 using COSMO-Ru (COnsortium for Small-scale MOdeling; Ru—Russia) and COSMO-RuART (ART—Aerosols and Reactive Trace gases) model systems. Four series of numerical experiments were conducted (one control experiment and three forest fire experiments assuming total vegetation destruction within the burned areas) to evaluate possible effects of forest fires on surface albedo and vegetation properties as well as their influence on air chemistry and aerosol concentration in the atmosphere. The modeling results showed significant influence of forest fires on regional weather conditions that occurred over large areas situated even away from burnt regions. Decreased surface albedo and reduced latent heat fluxes due to fire-induced destruction of forest cover lead to higher near-surface air temperature and lower air humidity in both burned and surrounding unburned forest areas. On the other hand, reduced incoming solar radiation due to smoke from forest fire plumes decreased land surface temperatures and increased thermal atmospheric stability resulting in reduced regional precipitation.

2016 ◽  
Vol 18 (1) ◽  
pp. 85-108 ◽  
Author(s):  
Paul A. Dirmeyer ◽  
Subhadeep Halder

Abstract Retrospective forecasts from CFSv2 are evaluated in terms of three elements of land–atmosphere coupling at subseasonal to seasonal time scales: sensitivity of the atmosphere to variations in land surface states, the magnitude of variability of land states and fluxes, and the memory or persistence of land surface anomalies. The Northern Hemisphere spring and summer seasons are considered for the period 1982–2009. Ensembles are constructed from all available pairings of initial land and atmosphere/ocean states taken from the Climate Forecast System Reanalysis at the start of April, May, and June among the 28 years, so that the effect of initial land states on the evolving forecasts can be assessed. Finally, improvement and continuance of forecast skill derived from accurate land surface initialization is related to the three coupling elements. It is found that soil moisture memory is the most broadly important element for significant improvement of realistic land initialization on forecast skill. However, coupling strength manifested through the elements of sensitivity and variability are necessary to realize the potential predictability provided by memory of initial land surface anomalies. Even though there is clear responsiveness of surface heat fluxes, near-surface temperature, humidity, and daytime boundary layer development to variations in soil moisture over much of the globe, precipitation in CFSv2 is unresponsive. Failure to realize potential predictability from land surface states could be due to unfavorable atmospheric stability or circulation states; poor quality of what is considered realistic soil moisture analyses; and errors in the land surface model, atmospheric model, or their coupled interaction.


2021 ◽  
Author(s):  
Martín Senande-Rivera ◽  
Gonzalo Miguez-Macho

<p>Extreme wildfire events associated with strong pyroconvection have gained the attention of the scientific community and the society in recent years. Strong convection in the fire plume can influence fire behaviour, as downdrafts can cause abrupt variations in surface wind direction and speed that can result in bursts of unexpected fire propagation. Climate change is expected to increase the length of the fire season and the extreme wildfire potential, so the risk of pyroconvection occurence might be also altered. Here, we analyse atmospheric stability and near-surface fire weather conditions in the Iberian Peninsula at the end of the 21st century to assess the projected changes in pyroconvective risk during favourable weather conditions for wildfire spread.  </p>


2016 ◽  
Vol 20 (2) ◽  
pp. 697-713 ◽  
Author(s):  
H. Hoffmann ◽  
H. Nieto ◽  
R. Jensen ◽  
R. Guzinski ◽  
P. Zarco-Tejada ◽  
...  

Abstract. Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.


2020 ◽  
Vol 9 (4) ◽  
pp. 134-141
Author(s):  
Vladimir Kotenko ◽  
Vladimir Abrazumov ◽  
Mihail Ermochenkov

Forest fires are accompanied by the release of a huge amount of heat, and the temperature at the edge of a forest fire, where firefighting equipment usually operates, reaches 300-700 °C. Fire engines are exposed to intense heat to extinguish forest fires. The main requirement for the design of such machines is the availability of rational thermal protection. Studies of various methods of thermal protection of cabins have showed the possibility of lowering the temperature on the inner surface of the cabin, but these methods show low efficiency. Protection of cabs from thermal radiation is not provided in the new developments of forest fire machines. It is proposed to use pre-preg coatings to protect cabins of forest fire engines. They are successfully used in spacecraft designs. Recent technologies for the production of such materials, developed recently, have significantly reduced the cost of production of these materials. It expands the possibilities of their application for other equipment subjected to intense heat exposure. The calculations have showed that the heat-protective coatings of the cabins made of pre-pregs quickly warm up to acceptable temperatures. However the use of water reserves in the tank of the car to cool the inside of the cabs provides high protection efficiency even at the limiting values of heat fluxes that occur in the fireplace. At the same time, water is not consumed; it is heated, circulating between the tank and the heat exchanger. The proposed method of protecting cabs of fire machines from thermal radiation is original one. It is a subject of further development.


2019 ◽  
Vol 11 (20) ◽  
pp. 2369 ◽  
Author(s):  
Ahmed M. El Kenawy ◽  
Mohamed E. Hereher ◽  
Sayed M. Robaa

Space-based data have provided important advances in understanding climate systems and processes in arid and semi-arid regions, which are hot-spot regions in terms of climate change and variability. This study assessed the performance of land surface temperatures (LSTs), retrieved from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua platform, over Egypt. Eight-day composites of daytime and nighttime LST data were aggregated and validated against near-surface seasonal and annual observational maximum and minimum air temperatures using data from 34 meteorological stations spanning the period from July 2002 to June 2015. A variety of accuracy metrics were employed to evaluate the performance of LST, including the bias, normalized root-mean-square error (nRMSE), Yule–Kendall (YK) skewness measure, and Spearman’s rho coefficient. The ability of LST to reproduce the seasonal cycle, anomalies, temporal variability, and the distribution of warm and cold tails of observational temperatures was also evaluated. Overall, the results indicate better performance of the nighttime LSTs compared to the daytime LSTs. Specifically, while nighttime LST tended to underestimate the minimum air temperature during winter, spring, and autumn on the order of −1.3, −1.2, and −1.4 °C, respectively, daytime LST markedly overestimated the maximum air temperature in all seasons, with values mostly above 5 °C. Importantly, the results indicate that the performance of LST over Egypt varies considerably as a function of season, lithology, and land use. LST performs better during transitional seasons (i.e., spring and autumn) compared to solstices (i.e., winter and summer). The varying interactions and feedbacks between the land surface and the atmosphere, especially the differences between sensible and latent heat fluxes, contribute largely to these seasonal variations. Spatially, LST performs better in areas with sandstone formations and quaternary sediments and, conversely, shows lower accuracy in regions with limestone, igneous, and metamorphic rocks. This behavior can be expected in hybrid arid and semi-arid regions like Egypt, where bare rocks contribute to the majority of the Egyptian territory, with a lack of vegetation cover. The low surface albedo of igneous and limestone rocks may explain the remarkable overestimation of daytime temperature in these regions, compared to the bright formations of higher surface albedo (i.e., sandy deserts and quaternary rocks). Overall, recalling the limited coverage of meteorological stations in Egypt, this study demonstrates that LST obtained from the MODIS product can be trustworthily employed as a surrogate for or a supplementary source to near-surface measurements, particularly for minimum air temperature. On the other hand, some bias correction techniques should be applied to daytime LSTs. In general, the fine space-based climatic information provided by MODIS LST can be used for a detailed spatial assessment of climate variability in Egypt, with important applications in several disciplines such as water resource management, hydrological modeling, agricultural management and planning, urban climate, biodiversity, and energy consumption, amongst others. Also, this study can contribute to a better understanding of the applications of remote sensing technology in assessing climatic feedbacks and interactions in arid and semi-arid regions, opening new avenues for developing innovative algorithms and applications specifically addressing issues related to these regions.


2012 ◽  
Vol 12 (8) ◽  
pp. 2591-2601 ◽  
Author(s):  
H. M. Mäkelä ◽  
M. Laapas ◽  
A. Venäläinen

Abstract. Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD) model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June–August), the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908–2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.


2008 ◽  
Vol 47 (11) ◽  
pp. 2879-2894 ◽  
Author(s):  
Eric G. Moody ◽  
Michael D. King ◽  
Crystal B. Schaaf ◽  
Steven Platnick

Abstract Five years (2000–04) of spatially complete snow-free land surface albedo data have been produced using high-quality-flagged diffuse bihemispherical (white sky) and direct-beam directional hemispherical (black sky) land surface albedo data derived from observations taken by the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Terra satellite platform (MOD43B3, collection 4). In addition, a spatially complete snow-free aggregate albedo climatological product was generated. These spatially complete products were prepared using an ecosystem-dependent temporal interpolation technique that retrieves missing data within 3%–8% error. These datasets have already been integrated into research and operational projects that require snow-free land surface albedo. As such, this paper provides details regarding the spatial and temporal distribution of the filled versus the original MOD43B3 data. The paper also explores the intra- and interannual variation in the 5-yr data record and provides a qualitative comparison of zonal averages and annual cycles of the filled versus the original MOD43B3 data. The analyses emphasize the data’s inter- and intraannual variation and show that the filled data exhibit large- and small-scale phenological behavior that is qualitatively similar to that of the original MOD43B3. These analyses thereby serve to showcase the inherent spectral, spatial, and temporal variability in the MOD43B3 data as well as the ability of the fill technique to preserve these unique regional and pixel-level phenological characteristics.


2019 ◽  
Vol 11 (18) ◽  
pp. 2101 ◽  
Author(s):  
M. Ahmed ◽  
Quazi Hassan ◽  
Masoud Abdollahi ◽  
Anil Gupta

Forest fires are natural disasters that create a significant risk to the communities living in the vicinity of forested landscape. To minimize the risk of forest fires for the resilience of such urban communities and forested ecosystems, we proposed a new remote sensing-based medium-term (i.e., four-day) forest fire danger forecasting system (FFDFS) based on an existing framework, and applied the system over the forested regions in the northern Alberta, Canada. Hence, we first employed moderate resolution imaging spectroradiometer (MODIS)-derived daily land surface temperature (Ts) and surface reflectance products along with the annual land cover to generate three four-day composite for Ts, normalized difference vegetation index (NDVI), and normalized difference water index (NDWI) at 500 m spatial resolution for the next four days over the forest-dominant regions. Upon generating these four-day composites, we calculated the variable-specific mean values to determine variable-specific fire danger maps with two danger classes (i.e., high and low). Then, by assuming the cloud-contaminated pixels as the low fire danger areas, we combined these three danger maps to generate a four-day fire danger map with four danger classes (i.e., low, moderate, high, and very high) over our study area of interest, which was further enhanced by incorporation of a human-caused static fire danger map. Finally, the four-day scale fire danger maps were evaluated using observed/ground-based forest fire occurrences during the 2015–2017 fire seasons. The results revealed that our proposed system was able to detect about 75% of the fire events in the top two danger classes (i.e., high and very high). The system was also able to predict the 2016 Horse River wildfire, the worst fire event in Albertian and Canadian history, with about 67% agreement. The higher accuracy outputs from our proposed model indicated that it could be implemented in the operational management, which would be very useful for lessening the adverse impact of such fire events.


2012 ◽  
Vol 13 (2) ◽  
pp. 521-538 ◽  
Author(s):  
Emanuel Dutra ◽  
Pedro Viterbo ◽  
Pedro M. A. Miranda ◽  
Gianpaolo Balsamo

Abstract Three different complexity snow schemes implemented in the ECMWF land surface scheme Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) are evaluated within the EC-EARTH climate model. The snow schemes are (i) the original HTESSEL single-bulk-layer snow scheme, (ii) a new snow scheme in operations at ECMWF since September 2009, and (iii) a multilayer version of the previous. In offline site simulations, the multilayer scheme outperforms the single-layer schemes in deep snowpack conditions through its ability to simulate sporadic melting events thanks to the lower thermal inertial of the uppermost layer. Coupled atmosphere–land/snow simulations performed by the EC-EARTH climate model are validated against remote sensed snow cover and surface albedo. The original snow scheme has a systematic early melting linked to an underestimation of surface albedo during spring that was partially reduced with the new snow schemes. A key process to improve the realism of the near-surface atmospheric temperature and at the same time the soil freezing is the thermal insulation of the snowpack (tightly coupled with the accuracy of snow mass and density simulations). The multilayer snow scheme outperforms the single-layer schemes in open deep snowpack (such as prairies or tundra in northern latitudes) and is instead comparable in shallow snowpack conditions. However, the representation of orography in current climate models implies limitations for accurately simulating the snowpack, particularly over complex terrain regions such as the Rockies and the Himalayas.


2007 ◽  
Vol 8 (2) ◽  
pp. 221-244 ◽  
Author(s):  
Song-Lak Kang ◽  
Kenneth J. Davis ◽  
Margaret LeMone

Abstract This study analyzes data collected by aircraft and surface flux sites over a 60-km north–south-oriented aircraft track for five fair-weather days during the International H2O Project (IHOP_2002) to investigate the atmospheric boundary layer (ABL) structures over a heterogeneous land surface under different background weather conditions. The surface skin temperature distribution over the aircraft track in this case is mostly explained by the soil thermal properties and soil moisture, and corresponds to the observed ABL depths except one day having a weak surface temperature gradient and a weak capping inversion. For the other four days, the blending height of the surface heterogeneity likely exceeds the ABL depth and thus the ABL establishes equilibrium with local surface conditions. Among the four days, two days having relatively small Obukhov lengths are evaluated to show the background weather conditions under which small-scale surface heterogeneity can influence the entire ABL. In fact, on one of these two days, relatively small-scale features of the surface temperature distribution can be seen in the ABL depth distribution. On the two small Obukhov length days multiresolution spectra and joint probability distributions, which are applied to the data collected from repeated low-level aircraft passes, both imply the existence of surface-heterogeneity-generated mesoscale circulations on scales of 10 km or more. Also on these two small Obukhov length days, the vertical profiles of dimensionless variances of velocity, temperature, and moisture show large deviations from the similarity curves, which also imply the existence of mesoscale circulations.


Sign in / Sign up

Export Citation Format

Share Document