scholarly journals Green Roof Enhancement on Buildings of the University of Applied Sciences in Neubrandenburg (Germany) in Times of Climate Change

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 382
Author(s):  
Manfred Köhler ◽  
Daniel Kaiser

The reduction in evaporative surfaces in cities is one driver for longer and hotter summers. Greening building surfaces can help to mitigate the loss of vegetated cover. Typical extensive green roof structures, such as sedum-based solutions, survive in dry periods, but how can green roofs be made to be more effective for the longer hot and dry periods to come? The research findings are based on continuous vegetation analytics of typical extensive green roofs over the past 20 years. -Survival of longer dry periods by fully adapted plants species with a focus on the fittest and best adapted species. -Additional technical and treatment solutions to support greater water storage in the media in dry periods and to support greater plant biomass/high biodiversity on the roofs by optimizing growing media with fertilizer to achieve higher evapotranspiration (short: ET) values. The main findings of this research: -The climate benefits of green roofs are associated with the quantity of phytomass. Selecting the right growing media is critical. -Typical extensive green roof substrates have poor nutrition levels. Fertilizer can significantly boost the ecological effects on CO2 fixation. -If the goal of the green roof is a highly biodiverse green roof, micro-structures are the right solution.

2009 ◽  
Vol 44 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Tim Van Seters ◽  
Lisa Rocha ◽  
Derek Smith ◽  
Glenn MacMillan

Abstract This three-year study evaluates the quantity and quality of runoff from an extensive green roof on a multistory building in Toronto. Laboratory physical, chemical, and leachate analyses of eleven commercially available green roof growing media were also undertaken to help identify the potential influence that the growing media may have on runoff chemistry. Continuous precipitation and runoff data collected over 18 months outside of the winter period indicated that the green roof discharged 63% less runoff than a neighbouring conventional modified bitumen roof. Runoff volumes from the green roof averaged 42% less than the conventional roof in April and November, and between 70 and 93% less during the summer months. Water samples were collected from both roofs during 21 rain events in 2003 and 2004 and analyzed for general chemistry (e.g., pH, total suspended solids), metals, nutrients, bacteria (n = 16), and polycyclic aromatic hydrocarbons (n = 18). Loads of most chemical variables in green roof runoff were lower than from the conventional roof. Exceptions included constituents such as calcium, magnesium, and total phosphorus, which were either naturally present in the media or were added to promote plant growth. Total phosphorus concentrations in green roof runoff were significantly higher than the conventional roof (α = 0.001), and regularly exceeded the Ontario receiving water objective (0.03 mg/L). Phosphorus concentrations fell significantly after the first year of monitoring (α = 0.001), suggesting that the nutrient is being leached from the media. Chemical analyses of green roof growing media showed that levels of most constituents were similar to or lower than typical background concentrations for agricultural soils in Ontario. However, leachate concentrations from several media exceeded receiving water standards for phosphorus, aluminum, copper, iron, and vanadium. This study highlights the importance of engineering green roof media to minimize leaching of nutrients and other contaminants while maintaining their ability to support plant growth.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 298
Author(s):  
Anna Krawczyk ◽  
Iwona Domagała-Świątkiewicz ◽  
Agnieszka Lis-Krzyścin

Over the last decade, an increase in the use of locally available, recycled, and waste materials as growing media components have occurred in various regions of the world in extensive green roof technology. For eco-concept reasons, such a strategy appears to be appropriate, but can be problematic due to difficulties in obtaining proper parameters of growing substrate. The growing media should be properly engineered in order to enable the proper functioning of green roofs and provide suitable environment for ideal root growth. The aim of the study was to assess the utility of locally occurring waste materials for growing media composition and estimate plant- and time-dependent changes in the physico-chemical parameters of waste-based substrates in a simulated extensive green roof system during a two-year Sedum acre L. cultivation. Five different substrate compositions were prepared using silica waste, crushed brick, Ca- and Zn-aggregates, melaphyre, tuff, sand, muck soil, urban compost, spent mushroom, and coconut fibres. Optimal water capacity, particle-size distribution, pH and salts concentration were found in all substrates. A higher concentration of macronutrients (N, P, K, Mg) and trace elements (B, Cu, Fe, Mn, Zn, Cd, Ni, Pb, and Cr) was found in waste-based substrates than in the commercial medium. In comparison to the parameters determined before establish the experiment, bulk density of tested growing media decreased, except for the substrates where the source of organic matter was the rapidly mineralising spent mushroom. The organic matter content in substrates after the two-year vegetation increased in relation to the ready-made substrate, with the exception of the composition with spent mushroom. After two years of the experiment, all available macronutrients and trace elements (with the exception of mineral N, K, SO4-S, and B) concentration were higher than in 2014, while pH, salt concentration was lower. In general, plants grown in waste substrates had lower dry matter content and higher biomass. A significantly higher biomass of S. acre L. was found in the first year of the experiment. In the second year of the research, the plants grown in the commercial medium, the substrate with silica waste, and the substrate with spent mushroom produced higher biomass than in the first year. No symptoms of abnormal growth were observed, despite the higher trace element concentrations in plants collected from waste-based substrate. Waste-based growing media can be considered as a valuable root environment for S. acre L. in an extensive green roof system.


2021 ◽  
Vol 13 (6) ◽  
pp. 3078
Author(s):  
Elena Giacomello ◽  
Jacopo Gaspari

The water storage capacity of a green roof generates several benefits for the building conterminous environment. The hydrologic performance is conventionally expressed by the runoff coefficient, according to international standards and guidelines. The runoff coefficient is a dimensionless number and defines the water retention performance over a long period. At the scale of single rain events, characterized by varying intensity and duration, the reaction of the green roof is scarcely investigated. The purpose of this study is to highlight how an extensive green roof—having a supposed minimum water performance, compared to an intensive one—responds to real and repetitive rain events, simulated in a rain chamber with controlled rain and runoff data. The experiment provides, through cumulative curve graphs, the behavior of the green roof sample during four rainy days. The simulated rain events are based on a statistical study (summarized in the paper) of 25 years of rain data for a specific location in North Italy characterized by an average rain/year of 1100 mm. The results prove the active response of the substrate, although thin and mineral, and quick draining, in terms of water retention and detention during intense rain events. The study raises questions about how to better express the water performance of green roofs.


2016 ◽  
Vol 62 (1-2) ◽  
pp. 44-57 ◽  
Author(s):  
Christine Thuring ◽  
Gary Grant

From its beginnings in Germany in the twentieth century, a thriving extensive green roof industry has become established in many countries in temperate climates. Based upon the success of the industry, and with an expectation that this technology will be adopted in other climates, this review of the ecological research of extensive green roofs aims to evaluate the application of this knowledge. The modern extensive green roof is the product of research in the 1970s by German green roof pioneers; the selection of suitable species from analogue habitats led to green roof vegetation dominated by drought tolerant taxa. The commercial success of extensive green roof systems can be attributed to engineering and horticultural research, to policy mechanisms in some places, and to a market that encourages innovation, and the origins in ecological design are now easily overlooked. Some of the work reviewed here, including the classification of spontaneous roof vegetation into plant communities, is not widely known due to its confinement to the German literature. By re-visiting the history of the extensive green roof and reviewing the ecological research that has contributed to our understanding of it, the intention is, for this paper, to inform those considering green roofs in other climatic regions, to apply an ecologically informed approach in using local knowledge for developing installations that are suited to the bioregion in which they occur. Finally the paper considers some future directions for research and practice.


2015 ◽  
Vol 25 (6) ◽  
pp. 774-784 ◽  
Author(s):  
Nikolaos Ntoulas ◽  
Panayiotis A. Nektarios ◽  
Thomais-Evelina Kapsali ◽  
Maria-Pinelopi Kaltsidi ◽  
Liebao Han ◽  
...  

Several locally available materials were tested to create an optimized growth substrate for arid and semiarid Mediterranean extensive green roofs. The study involved a four-step screening procedure. At the first step, 10 different materials were tested including pumice (Pum), crushed tiles grade 1–2 mm (T1–2), 2–4 mm (T2–4), 5–8 mm (T5–8), 5–16 mm (T5–16), and 4–22 mm (T4–22); crushed bricks of either 2–4 mm (B2–4) or 2–8 mm (B2–8); a thermally treated clay (TC); and zeolite (Zeo). All materials were tested for their particle size distribution, pH, and electrical conductivity (EC). The results were compared for compliance with existing guidelines for extensive green roof construction. From the first step, the most promising materials were shown to include Pum, Zeo, T5–8, T5–16, and TC, which were then used at the second stage to develop mixtures between them. Tests at the second stage included particle size distribution and moisture potential curves. Pumice mixed with TC provided the best compliance with existing guidelines in relation to particle size distribution, and it significantly increased moisture content compared with the mixes of Pum with T5–8 and T5–16. As a result, from the second screening step, the best performing substrate was Pum mixed with TC and Zeo. The third stage involved the selection of the most appropriate organic amendment of the growing substrate. Three composts having different composition and sphagnum peat were analyzed for their chemical and physical characteristics. The composts were a) garden waste compost (GWC), b) olive (Olea europaea L.) mill waste compost (OMWC), and c) grape (Vitis vinifera L.) marc compost (GMC). It was found that the peat-amended substrate retained increased moisture content compared with the compost-amended substrates. The fourth and final stage involved the evaluation of the environmental impact of the final mix with the four different organic amendments based on their first flush nitrate nitrogen (NO3−-N) leaching potential. It was found that GWC and OMWC exhibited increased NO3−-N leaching that initially reached 160 and 92 mg·L−1 of NO3−-N for OMWC and GWC, respectively. By contrast, peat and GMC exhibited minimal NO3−-N leaching that was slightly above the maximum contaminant level of 10 mg·L−1 of NO3−-N (17.3 and 14.6 mg·L−1 of NO3−N for peat and GMC, respectively). The latter was very brief and lasted only for the first 100 and 50 mL of effluent volume for peat and GMC, respectively.


2021 ◽  
Vol 19 (17) ◽  
Author(s):  
Shazmin Shareena Ab. Azis ◽  
Muhammad Najib Mohamed Razali ◽  
Nurul Hana Adi Maimun ◽  
Nurul Syakima Mohd Yusoff ◽  
Mohd Shahril Abdul Rahman ◽  
...  

Modernization has created new impervious urban landscape contributed to major catastrophe. Urban drainage system incapable to convey the excess rainwater resulting in flash flood due to heavy rainfall. The combination of green roof on building have tremendously proved to control stormwater efficiently. This study is conducted to review the efficiency of intensive and extensive green roof in reducing urban storm water runoff. This study identifies characteristic of green roof that contributes to lessening urban storm water runoff. Data was collected based on rigorous literature reviews and analyzed using meta-analysis. Overall, findings revealed intensive green roof performed better in reducing storm water runoff compared to extensive green roof. Green roof performance increases as the depth of substrate increased. Origanum and Sedum plants are both highly effective for intensive and extensive green roofs. The performance of green roof reduces as degree of roof slope increased.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 173 ◽  
Author(s):  
Daniel Kaiser ◽  
Manfred Köhler ◽  
Marco Schmidt ◽  
Fiona Wolff

Urban environments are characterized by dense development and paved ground with reduced evapotranspiration rates. These areas store sensible and latent heat, providing the base for typical urban heat island effects. Green roof installations are one possible strategy to reintroduce evaporative surfaces into cities. If green roofs are irrigated, they can contribute to urban water management and evapotranspiration can be enhanced. As part of two research projects, lysimeter measurements were used to determine the real evapotranspiration rates on the research roof of the University of Applied Sciences in Neubrandenburg, Germany. In this paper, we address the results from 2017, a humid and cool summer, and 2018, a century summer with the highest temperatures and dryness over a long period of time, measured in Northeast Germany. The lysimeter measurements varied between the normal green roof layer (variation of extensive green roof constructions) and a special construction with an extra retention layer and damming. The results show that the average daily evapotranspiration rates can be enhanced from 3 to 5 L/m2/day under optimized conditions. A second test on a real green roof with irrigation was used to explain the cooling effects of the surface above a café building in Berlin.


Author(s):  
Yuriy Makar

While writing his memoir, the author highlights the root causes of Collaboration University of Saskatchewan and State University of Chernivtsi Agreement. In June, 1977 on behalf of Professor Konstiantyn Chervinskyi – the-then Rector of State University of Chernivtsi, the author had the honour to meet in Kyiv Robert Begg – the President of University of Saskatchewan. What is more, during this crucial meeting the author initiated the talks concerning further fruitful collaboration between universities. Interestingly, the actual inter-university collaboration has started taking its shape since 1976, when a bronze statue of Lesya Ukrayinka, made in Kyiv (Ukraine in former USSR) by sculptor Halyna Kalchenko and architect Anatoliy Ihnashchenko, was unveiled at the University of Saskatchewan (Sascatoon). The monument was presented to the University by the Association for Cultural Relations with Ukrainians Abroad. Significantly, it was the Association that invited the Rector of University of Saskatchewan and his wife to pay an official visit to Ukraine. The Rector himself suggested signing the agreement with one of the universities of West Ukraine. Symbolically, State University of Chernivtsi was targeted by the Ministry of Higher and Secondary Specialized Education of the Ukrainian Soviet Socialist Republic. Of particular value were the provisions of University of Saskatchewan agreement. They supported the study of the language, culture and history of Ukraine. Furthermore, the agreement aimed at academic and cultural exchanges of faculty, scholars and students at the post-secondary level. This was unprecedented formal agreement between a North American university and a university in Ukraine. Noteworthy, Collaboration agreement was solemnly concluded by both Rectors on June 5, 1977 in compliance with the sticking points of the Canadian part. Regrettably, the former USSR’s (Mocsow) authorities amended the agreement, excluding the point of students’ exchange program. In terms of the Canadian students, they were able to come and study at State University of Chernivtsi; our students, however, were forbidden to cross the borders of the USSR. Instead, the faculty of our university enjoyed the right to go on their sabbatical to Saskatoon. Paying the tribute to University of Saskatchewan, the author extends his gratitude to its authorities. Nevertheless, after the USSR collapse, the students of State University of Chernivtsi got an excellent opportunity to study in Canada. To conclude, the Agreement prolongs its validity. To be more precise, the Chernivtsi-Saskatoon Universities’ Collaboration Agreement will celebrate its 40th anniversary in 2017. According to the author, the agreement has quite a reasonable right to be extended. Keywords: Lesya Ukrayinka, University of Saskatchewan, State University of Chernivtsi, Collaboration Agreement


2009 ◽  
pp. 19-35
Author(s):  
Emilio Maura ◽  
F. Peloso Paolo

- The Biotypologic Orthogenetic Institute of the University of Genoa, was created, in 1926, by the Italian endocrinologist Nicola Pende (1880 -1970). Pende's biotypology follows the Italian medical tradition, fruit of two different trains of thought: Cesare Lombroso's medical approach and Achille De Giovanni and Giacinto Viola's constitutionalist theory. This dual line of thought brings medical scholars to focus on public health, early diagnosis and prevention, all topics comprising a political interest in society, nation and race. Moreover, this approach involves a reductionist view of the body/mind relationship - enclosing mental and relational life in the body - and consequently allows morphological and endocrinologic measurements. Pende's orthogenetics originates from the same premises as Eugenetics and adopts the same aims, but differs when it advocates the importance of acting after birth, so as not to infringe the tenets of the catholic church on the right of every person to live. Pende's medical theory - outlined before the fascist era - proposes a "total" and reductive approach to the complexity of the human being, in line with the fascists' endeavour to put each person in the right place (hence the usefulness of early diagnosis), and thus build, once and for ever, a perfect and stable social organisation. Pende's biotypology considers public health as a priority, followed by individual health. The past debate in the media - set off by the experience of Pende's Institute - addressed some issues discussed today : the relationship between individual and public health interests, and the bioethical features of early diagnosis in medicine and psychology. Keywords: biotypology, orthogenetics, biopolitics, constitutionalism, fascism, bioethics.


2011 ◽  
Vol 11 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Vivian W. Y. Tam ◽  
Xiaoling Zhang ◽  
Winnie Lee ◽  
LY Shen

Developed cities such as Hong Kong are usually densely populated. Since the land is limited, high-rise buildings are constructed. When the building height becomes higher, air flow is reduced and heat is trapped among high-rise buildings. Air temperature will be greatly increased and air pollution becomes a serious problem. This creates a walled building problem. To reduce air temperature caused by the wall-effects, various methods have been developed in the previous studies. One typical method is the use of green roof systems. The application of extensive green roofs on the existing building rooftops has been recommended in Hong Kong since 2001. The advantage of this practice is that no additional floor area is required and it can also improve urban greenery. Although a green roof system has been introduced and adopted in Hong Kong since 2001, the emphasis is mainly given to the application of intensive green roofs for podium garden instead of extensive green roofs. It is considered valuable and necessary of the extensive green roofs for the buildings. This paper investigates the current practice of using extensive green roofs in Hong Kong. The constraints in applying extensive green roofs are investigated, which leads to studying the solutions for mitigating these constraints and improving the future development of the implementation.


Sign in / Sign up

Export Citation Format

Share Document