scholarly journals The “Federica” Hand

2021 ◽  
Vol 8 (9) ◽  
pp. 128
Author(s):  
Daniele Esposito ◽  
Sergio Savino ◽  
Emilio Andreozzi ◽  
Chiara Cosenza ◽  
Vincenzo Niola ◽  
...  

Hand prostheses partially restore hand appearance and functionalities. In particular, 3D printers have provided great opportunities by simplifying the manufacturing process and reducing costs. The “Federica” hand is 3D-printed and equipped with a single servomotor, which synergically actuates its five fingers by inextensible tendons; no springs are used for hand opening. A differential mechanical system simultaneously distributes the motor force on each finger in predefined portions. The proportional control of hand closure/opening is achieved by monitoring muscle contraction by means of a thin force sensor, as an alternative to EMG. The electrical current of the servomotor is monitored to provide sensory feedback of the grip force, through a small vibration motor. A simple Arduino board was adopted as the processing unit. A closed-chain, differential mechanism guarantees efficient transfer of mechanical energy and a secure grasp of any object, regardless of its shape and deformability. The force sensor offers some advantages over the EMG: it does not require any electrical contact or signal processing to monitor muscle contraction intensity. The activation speed (about half a second) is high enough to allow the user to grab objects on the fly. The cost of the device is less then 100 USD. The “Federica” hand has proved to be a lightweight, low-cost and extremely efficient prosthesis. It is now available as an open-source project (CAD files and software can be downloaded from a public repository), thus allowing everyone to use the “Federica” hand and customize or improve it.

2020 ◽  
Vol 15 ◽  
pp. 155892502097726
Author(s):  
Wei Wang ◽  
Zhiqiang Pang ◽  
Ling Peng ◽  
Fei Hu

Performing real-time monitoring for human vital signs during sleep at home is of vital importance to achieve timely detection and rescue. However, the existing smart equipment for monitoring human vital signs suffers the drawbacks of high complexity, high cost, and intrusiveness, or low accuracy. Thus, it is of great need to develop a simplified, nonintrusive, comfortable and low cost real-time monitoring system during sleep. In this study, a novel intelligent pillow was developed based on a low-cost piezoelectric ceramic sensor. It was manufactured by locating a smart system (consisting of a sensing unit i.e. a piezoelectric ceramic sensor, a data processing unit and a GPRS communication module) in the cavity of the pillow made of shape memory foam. The sampling frequency of the intelligent pillow was set at 1000 Hz to capture the signals more accurately, and vital signs including heart rate, respiratory rate and body movement were derived through series of well established algorithms, which were sent to the user’s app. Validation experimental results demonstrate that high heart-rate detection accuracy (i.e. 99.18%) was achieved in using the intelligent pillow. Besides, human tests were conducted by detecting vital signs of six elder participants at their home, and results showed that the detected vital signs may well predicate their health conditions. In addition, no contact discomfort was reported by the participants. With further studies in terms of validity of the intelligent pillow and large-scale human trials, the proposed intelligent pillow was expected to play an important role in daily sleep monitoring.


2021 ◽  
Author(s):  
Airidas Korolkovas ◽  
Alexander Katsevich ◽  
Michael Frenkel ◽  
William Thompson ◽  
Edward Morton

X-ray computed tomography (CT) can provide 3D images of density, and possibly the atomic number, for large objects like passenger luggage. This information, while generally very useful, is often insufficient to identify threats like explosives and narcotics, which can have a similar average composition as benign everyday materials such as plastics, glass, light metals, etc. A much more specific material signature can be measured with X-ray diffraction (XRD). Unfortunately, XRD signal is very faint compared to the transmitted one, and also challenging to reconstruct for objects larger than a small laboratory sample. In this article we analyze a novel low-cost scanner design which captures CT and XRD signals simultaneously, and uses the least possible collimation to maximize the flux. To simulate a realistic instrument, we derive a formula for the resolution of any diffraction pathway, taking into account the polychromatic spectrum, and the finite size of the source, detector, and each voxel. We then show how to reconstruct XRD patterns from a large phantom with multiple diffracting objects. Our approach includes a reasonable amount of photon counting noise (Poisson statistics), as well as measurement bias, in particular incoherent Compton scattering. The resolution of our reconstruction is sufficient to provide significantly more information than standard CT, thus increasing the accuracy of threat detection. Our theoretical model is implemented in GPU (Graphics Processing Unit) accelerated software which can be used to assess and further optimize scanner designs for specific applications in security, healthcare, and manufacturing quality control.


2015 ◽  
Vol 814 ◽  
pp. 91-95
Author(s):  
Cheng Wang ◽  
Hao Yu ◽  
Tao Huang ◽  
Chao Tan

Triboelectric nanogenerators have recently been used to harvest mechanical energy from surrounding environment which is of great significance in the field of energy conversion. Electrospinning provides a simple, low cost and versatile method for the generation of 1D nanostrucutures. Nanofiber membranes have many advantages over the commonly used dense film for designing the riboelectric nanogenerators, such as the low wear resistance caused from the internal and excellent external consistency of the electrospinning membranes. In this paper, we produce a variety of polymer films by electro-spinning, and fabricate Polyvinylidene Fluoride (PVDF) triboelectric nanogenerators with different polymer films afterwards. We except to explore the TEG power generation effect, and influencing factors, and then determine the best combination of the results of TEG (PVDF-PHBV). Such a flexible polymer TEG generates output voltage of up to 112 V at a power of 0.045W.


2011 ◽  
Vol 21 (01) ◽  
pp. 31-47 ◽  
Author(s):  
NOEL LOPES ◽  
BERNARDETE RIBEIRO

The Graphics Processing Unit (GPU) originally designed for rendering graphics and which is difficult to program for other tasks, has since evolved into a device suitable for general-purpose computations. As a result graphics hardware has become progressively more attractive yielding unprecedented performance at a relatively low cost. Thus, it is the ideal candidate to accelerate a wide variety of data parallel tasks in many fields such as in Machine Learning (ML). As problems become more and more demanding, parallel implementations of learning algorithms are crucial for a useful application. In particular, the implementation of Neural Networks (NNs) in GPUs can significantly reduce the long training times during the learning process. In this paper we present a GPU parallel implementation of the Back-Propagation (BP) and Multiple Back-Propagation (MBP) algorithms, and describe the GPU kernels needed for this task. The results obtained on well-known benchmarks show faster training times and improved performances as compared to the implementation in traditional hardware, due to maximized floating-point throughput and memory bandwidth. Moreover, a preliminary GPU based Autonomous Training System (ATS) is developed which aims at automatically finding high-quality NNs-based solutions for a given problem.


Author(s):  
Masoud Naghdi ◽  
Farhad Farzbod ◽  
Paul M. Goggans

Abstract In electromechanical actuators Lorentz force law is used to convert electrical energy into rotational or linear mechanical energy. In these conventional electromechanical actuators, rigid wires conducts the electrical current and as such the types of motion generated by these actuators are limited. Recent advances in liquid metal alloys permit designing electrical wires that are stretchable. These flexible wires have been used to fabricate various flexible connections, sensors and antennas. However, there have been very little efforts to use these stretchable liquid metal wires as actuators. Building upon our previous work in this area, we have made a flexible pump which can be used in bio applications. In this design we placed a flexible polymeric substrate filled by liquid metal Galinstan between two permanent magnets. Since the pump should convey the biological cells suspended along the fluid flow, utilizing check valves may increase the risk of clog in the inlet or outlet. Therefore, our design is based on the nozzle/diffuser concept. This new pump can be considered as a peristaltic and valve-less mechanical pumps which utilizes the Lorentz force law as the actuating mechanism.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1489 ◽  
Author(s):  
Rafael Fayos-Jordan ◽  
Santiago Felici-Castell ◽  
Jaume Segura-Garcia ◽  
Adolfo Pastor-Aparicio ◽  
Jesus Lopez-Ballester

The Internet of Things (IoT) is a network widely used with the purpose of connecting almost everything, everywhere to the Internet. To cope with this goal, low cost nodes are being used; otherwise, it would be very expensive to expand so fast. These networks are set up with small distributed devices (nodes) that have a power supply, processing unit, memory, sensors, and wireless communications. In the market, we can find different alternatives for these devices, such as small board computers (SBCs), e.g., Raspberry Pi (RPi)), with different features. Usually these devices run a coarse version of a Linux operating system. Nevertheless, there are many scenarios that require enhanced computational power that these nodes alone are unable to provide. In this context, we need to introduce a kind of collaboration among the devices to overcome their constraints. We based our solution in a combination of clustering techniques (building a mesh network using their wireless capabilities); at the same time we try to orchestrate the resources in order to improve their processing capabilities in an elastic computing fashion. This paradigm is called fog computing on IoT. We propose in this paper the use of cloud computing technologies, such as Linux containers, based on Docker, and a container orchestration platform (COP) to run on the top of a cluster of these nodes, but adapted to the fog computing paradigm. Notice that these technologies are open source and developed for Linux operating system. As an example, in our results we show an IoT application for soundscape monitoring as a proof of concept that it will allow us to compare different alternatives in its design and implementation; in particular, with regard to the COP selection, between Docker Swarm and Kubernetes. We conclude that using and combining these techniques, we can improve the overall computation capabilities of these IoT nodes within a fog computing paradigm.


2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Nagamanikandan Govindan ◽  
Asokan Thondiyath

Abstract This paper presents the design, analysis, and testing of a novel multimodal grasper having the capabilities of shape conformation, within-hand manipulation, and a built-in compact mechanism to vary the forces at the contact surface. The proposed grasper has two important qualities: versatility and less complexity. The former refers to the ability to grasp a range of objects having different geometrical shape, size, and payload and perform in-hand manipulations such as rolling and sliding, and the latter refers to the uncomplicated design, and ease of planning and control strategies. Increasing the number of functions performed by the grasper to adapt to a variety of tasks in structured and unstructured environments without increasing the mechanical complexity is the main interest of this research. The proposed grasper consists of two hybrid jaws having a rigid inner structure encompassed by a flexible, active gripping surface. The flexibility of the active surface has been exploited to achieve shape conformation, and the same has been utilized with a compact mechanism, introduced in the jaws, to vary the contact forces while grasping and manipulating an object. Simple and scalable structure, compactness, low cost, and simple control scheme are the main features of the proposed design. Detailed kinematic and static analysis are presented to show the capability of the grasper to adjust and estimate the contact forces without using a force sensor. Experiments are conducted on the fabricated prototype to validate the different modes of operation and to evaluate the advantages of the proposed concept.


Author(s):  
Basanta Raj Adhikari ◽  
Nagendra Raj Sitoula

Every year, flood impose substantial economic, social and environmental cost on Nepalese community through direct damage to residential, commercial, educational and structures. Moreover, the flood destroys animal farm, commercial stock and records and other content of the building and pollutes the water. Early Warning Systems are important to save such lives and properties which involves computer, satellite data and high accurate operating system but this system is very costly in terms of installation as well as operation and maintenance leading to hindrance in the sustainability of the system. However, high-tech technology is very expensive and not feasible in Nepal and therefore low-cost and easy operating system is needed in the rural parts of Nepal. The system includes Solar panel, Siren, Ultrasonic sensor, processing unit, and battery. The ultrasonic sensor sense water level and the siren will automatically start. The threshold can be set up according to the space and time. Bulletin of Department of Geology, vol. 20-21, 2018, pp: 87-92


Author(s):  
Margaret Antonik ◽  
Brendan T. O'Connor ◽  
Scott Ferguson

This paper compares the economic viability and performance outcomes of two different thermoelectric device architectures to determine the advantages and appropriate use of each configuration. Hybrid thermoelectric coolers (TECs) employ thin-film thermoelectric materials sandwiched between a plastic substrate and form a corrugated structure. Roll-to-roll (R2R) manufacturing and low-cost polymer materials offer a cost advantage to the hybrid architecture at the sacrifice of performance capabilities while conventional bulk devices offer increased performance at a higher cost. Performance characteristics and cost information are developed for both hybrid and conventional bulk single-stage thermoelectric modules. The design variables include device geometry, electrical current input, and thermoelectric material type. The tradeoffs between cooling performance and cost will be explored, and the thermoelectric system configuration is analyzed for both hybrid and conventional bulk TECs.


Sign in / Sign up

Export Citation Format

Share Document