scholarly journals Warburg Effect, Glutamine, Succinate, Alanine, When Oxygen Matters

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1000
Author(s):  
Frédéric Bouillaud ◽  
Noureddine Hammad ◽  
Laurent Schwartz

Cellular bioenergetics requires an intense ATP turnover that is increased further by hypermetabolic states caused by cancer growth or inflammation. Both are associated with metabolic alterations and, notably, enhancement of the Warburg effect (also known as aerobic glycolysis) of poor efficiency with regard to glucose consumption when compared to mitochondrial respiration. Therefore, beside this efficiency issue, other properties of these two pathways should be considered to explain this paradox: (1) biosynthesis, for this only indirect effect should be considered, since lactate release competes with biosynthetic pathways in the use of glucose; (2) ATP production, although inefficient, glycolysis shows other advantages when compared to mitochondrial respiration and lactate release may therefore reflect that the glycolytic flux is higher than required to feed mitochondria with pyruvate and glycolytic NADH; (3) Oxygen supply becomes critical under hypermetabolic conditions, and the ATP/O2 ratio quantifies the efficiency of oxygen use to regenerate ATP, although aerobic metabolism remains intense the participation of anaerobic metabolisms (lactic fermentation or succinate generation) could greatly increase ATP/O2 ratio; (4) time and space constraints would explain that anaerobic metabolism is required while the general metabolism appears oxidative; and (5) active repression of respiration by glycolytic intermediates, which could ensure optimization of glucose and oxygen use.

2021 ◽  
Author(s):  
Caroline R. Bartman ◽  
Yihui Shen ◽  
Won Dong Lee ◽  
Tara TeSlaa ◽  
Connor S.R. Jankowski ◽  
...  

SummaryThe tricarboxylic acid (TCA) cycle oxidizes carbon substrates to carbon dioxide, with the resulting high energy electrons fed into the electron transport chain to produce ATP by oxidative phosphorylation. Healthy tissues derive most of their ATP from oxidative metabolism, and the remainder from glycolysis. The corresponding balance in tumors remains unclear. Tumors upregulate aerobic glycolysis (the Warburg effect), yet they also typically require an intact TCA cycle and electron transport chain1–6. Recent studies have measured which nutrients contribute carbon to the tumor TCA metabolites7,8, but not tumor TCA flux: how fast the cycle turns. Here, we develop and validate an in vivo dynamic isotope tracing-mass spectrometry strategy for TCA flux quantitation, which we apply to all major mouse organs and to five tumor models. We show that, compared to the tissue of origin, tumor TCA flux is markedly suppressed. Complementary glycolytic flux measurements confirm tumor glycolysis acceleration, but the majority of tumor ATP is nevertheless made aerobically, and total tumor ATP production is suppressed compared to healthy tissues. In murine pancreatic cancer, this is accommodated by downregulation of the major energy-using pathway in the healthy exocrine pancreas, protein synthesis. Thus, instead of being hypermetabolic as commonly assumed, tumors apparently make ATP at a lower than normal rate. We propose that, as cells de-differentiate into cancer, they eschew ATP-intensive processes characteristic of the host tissue, and that the resulting suppressed ATP demand contributes to the Warburg effect and facilitates cancer growth in the nutrient-poor tumor microenvironment.


2020 ◽  
Vol 21 (5) ◽  
pp. 1661
Author(s):  
Anamarija Mojzeš ◽  
Marko Tomljanović ◽  
Lidija Milković ◽  
Renata Novak Kujundžić ◽  
Ana Čipak Gašparović ◽  
...  

In order to support uncontrolled proliferation, cancer cells need to adapt to increased energetic and biosynthetic requirements. One such adjustment is aerobic glycolysis or the Warburg effect. It is characterized by increased glucose uptake and lactate production. Curcumin, a natural compound, has been shown to interact with multiple molecules and signaling pathways in cancer cells, including those relevant for cell metabolism. The effect of curcumin and its solvent, ethanol, was explored on four different cancer cell lines, in which the Warburg effect varied. Vital cellular parameters (proliferation, viability) were measured along with the glucose consumption and lactate production. The transcripts of pyruvate kinase 1 and 2 (PKM1, PKM2), serine hydroxymethyltransferase 2 (SHMT2) and phosphoglycerate dehydrogenase (PHGDH) were quantified with RT-qPCR. The amount and intracellular localization of PKM1, PKM2 and signal transducer and activator of transcription 3 (STAT3) proteins were analyzed by Western blot. The response to ethanol and curcumin seemed to be cell-type specific, with respect to all parameters analyzed. High sensitivity to curcumin was present in the cell lines originating from head and neck squamous cell carcinomas: FaDu, Detroit 562 and, especially, Cal27. Very low sensitivity was observed in the colon adenocarcinoma-originating HT-29 cell line, which retained, after exposure to curcumin, a higher levels of lactate production despite decreased glucose consumption. The effects of ethanol were significant.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1799-1799 ◽  
Author(s):  
Shiho Fujiwara ◽  
Yawara Kawano ◽  
Hiromichi Yuki ◽  
Yutaka Okuno ◽  
Kisato Nosaka ◽  
...  

Abstract Abstract 1799 Introduction: A number of studies have shown that the high level of serum lactate dehydrogenase (LDH) serves as an indicator for poor prognosis in multiple myeloma (MM). LDH is a key enzyme for glycolysis converting pyruvate to lactate, which is eventually utilized as an energy source particularly in tumor cells. It has been reported that cancer cells utilize this glycolysis pathway even in the presence of adequate oxygen to provide cancer cells with energy, called the Warburg effect (aerobic glycolysis). Myc is known to regulate LDH and pyruvate dehydrogenase kinase 1 (PDK1), which are master regulators of glycolysis (Figure 1). Although myc is a well known gene expressed in MM cells, there has been no report analyzing its association with the glycolysis-regulating genetic system, which is located downstream to the myc gene, in MM cells. In the present study, we examined if the glycolysis system is directly or indirectly associated with the survival of MM cells. Methods: MM cells were purified from primary bone marrow samples from 54 patients using CD138-magnetic beads. Written informed consent was obtained from all cases. Seven MM cell lines, RPMI8226, U266, KMS12BM, KMS12PE, KHM11, KMM1 and KMS11, were employed. Five genes associated with glycolysis, i.e., c-MYC, GLUT1 (glucose transporter 1), LDHA (LDH-encoding gene), hypoxia induced factor-1 alpha (HIF1a) and PDK1, were examined using real time PCR analysis. Glucose consumption and lactate production in culture supernatants of MM cell lines were analyzed. Oxamate, a competitive inhibitor of LDHA, was utilized to quantify cytotoxic effects on MM cells. Cytotoxicity was evaluated with AnnexinV/PI staining. Results: Heterogeneous expression of LDHA gene was observed (Figure 2A). High LDHA mRNA expression levels significantly correlated with poor survival (Figure 2B, p<0.01). A significant correlation between serum LDH levels and the mRNA expression levels of LDHA, was also found (p<0.01). Moreover, LDHA mRNA expression was significantly higher in MM cells than in plasma cells from patients with monoclonal gammopathy of undetermined significance (MGUS) (p<0.01). LDHA expression levels correlated with the expression levels of (i) c-MYC (p<0.0001) (ii) PDK1 (p<0.0023), a key enzyme regulating the Warburg effect, and (iii) GLUT1 (p<0.0003), while it did not correlate with HIF1a expression. It was also found that the greater glucose consumption, the greater lactate production as well as LDH activity in MM cell lines with higher LDHA mRNA expression. Finally, we found that an LDH-inhibitor, oxamate, activated caspase-3 (Figure 3) and induced apoptosis in MM cell lines as well as primary MM cells. Conclusion: Our results suggest that aerobic glycolysis (the Warburg effect) is up-regulated in MM cells of patients with high serum LDH levels and that the aberrant expression of LDHA, PDK1 and GLUT1 is critical for the survival of MM cells with high serum LDH levels. Thus, aerobic glycolysis itself could serve as a novel therapeutic target in MM patients. Since MM with high serum LDH is with poor prognosis even after the advent of new agents, the present data might have a clinical relevance and might open a new avenue to develop novel therapeutic modalities for treating MM with high serum LDH levels. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 175 (6) ◽  
pp. 913-923 ◽  
Author(s):  
Hélène Pelicano ◽  
Rui-hua Xu ◽  
Min Du ◽  
Li Feng ◽  
Ryohei Sasaki ◽  
...  

Cancer cells exhibit increased glycolysis for ATP production due, in part, to respiration injury (the Warburg effect). Because ATP generation through glycolysis is less efficient than through mitochondrial respiration, how cancer cells with this metabolic disadvantage can survive the competition with other cells and eventually develop drug resistance is a long-standing paradox. We report that mitochondrial respiration defects lead to activation of the Akt survival pathway through a novel mechanism mediated by NADH. Respiration-deficient cells (ρ-) harboring mitochondrial DNA deletion exhibit dependency on glycolysis, increased NADH, and activation of Akt, leading to drug resistance and survival advantage in hypoxia. Similarly, chemical inhibition of mitochondrial respiration and hypoxia also activates Akt. The increase in NADH caused by respiratory deficiency inactivates PTEN through a redox modification mechanism, leading to Akt activation. These findings provide a novel mechanistic insight into the Warburg effect and explain how metabolic alteration in cancer cells may gain a survival advantage and withstand therapeutic agents.


2018 ◽  
Author(s):  
Cecilia Martinez-Ortiz ◽  
Andres Carrillo-Garmendia ◽  
Blanca Flor Correa-Romero ◽  
Melina Canizal-García ◽  
Juan Carlos González-Hernández ◽  
...  

AbstractThe switch of mitochondrial respiration to fermentation as the main pathway to produce ATP through the increase of glycolytic flux is known as the Crabtree effect. The elucidation of the molecular mechanism of the Crabtree effect may have important applications in ethanol production and lay the groundwork for the Warburg effect, which is essential in the molecular etiology of cancer. A key piece in this mechanism could be Snf1p, which is a protein that participates in the nutritional response that includes glucose metabolism. Thus, this work aimed to recognize the role of the SNF1 complex on the glycolytic flux and mitochondrial respiration, to gain insights about its relationship with the Crabtree effect. Herein, we found that inSaccharomyces cerevisiaecells grown at 1% glucose, mutation ofSNF1gene decreased glycolytic flux, increased NAD(P)H, enhancedHXK2gene transcription, and decreased mitochondrial respiration. Meanwhile, the same mutation increased the mitochondrial respiration of cells grown at 10% glucose. Moreover,SNF4gene deletion increased respiration and growth at 1% of glucose. In the case of theGAL83gene, we did not detect any change in mitochondrial respiration or growth. Altogether, these findings indicate thatSNF1is vital to switch from mitochondrial respiration to fermentation.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5557
Author(s):  
Alexandre Vallée ◽  
Yves Lecarpentier ◽  
Jean-Noël Vallée

The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.


2021 ◽  
Author(s):  
Shonagh Russell ◽  
Liping Xu ◽  
Yoonseok Kam ◽  
Dominique Abrahams ◽  
Bryce Ordway ◽  
...  

Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the “Warburg Effect”. It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. To test this hypothesis, we stably transfected lowly-glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton exporting systems: either PMA1 (yeast H+-ATPase) or CAIX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. Therefore, cancer cells with increased H+ export increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards a Warburg phenotype.


2015 ◽  
Vol 43 (6) ◽  
pp. 1187-1194 ◽  
Author(s):  
Stefan Schuster ◽  
Daniel Boley ◽  
Philip Möller ◽  
Heiko Stark ◽  
Christoph Kaleta

For producing ATP, tumour cells rely on glycolysis leading to lactate to about the same extent as on respiration. Thus, the ATP synthesis flux from glycolysis is considerably higher than in the corresponding healthy cells. This is known as the Warburg effect (named after German biochemist Otto H. Warburg) and also applies to striated muscle cells, activated lymphocytes, microglia, endothelial cells and several other cell types. For similar phenomena in several yeasts and many bacteria, the terms Crabtree effect and overflow metabolism respectively, are used. The Warburg effect is paradoxical at first sight because the molar ATP yield of glycolysis is much lower than that of respiration. Although a straightforward explanation is that glycolysis allows a higher ATP production rate, the question arises why cells do not re-allocate protein to the high-yield pathway of respiration. Mathematical modelling can help explain this phenomenon. Here, we review several models at various scales proposed in the literature for explaining the Warburg effect. These models support the hypothesis that glycolysis allows for a higher proliferation rate due to increased ATP production and precursor supply rates.


2016 ◽  
Vol 44 (5) ◽  
pp. 1499-1505 ◽  
Author(s):  
Michelle Potter ◽  
Emma Newport ◽  
Karl J. Morten

Influential research by Warburg and Cori in the 1920s ignited interest in how cancer cells' energy generation is different from that of normal cells. They observed high glucose consumption and large amounts of lactate excretion from cancer cells compared with normal cells, which oxidised glucose using mitochondria. It was therefore assumed that cancer cells were generating energy using glycolysis rather than mitochondrial oxidative phosphorylation, and that the mitochondria were dysfunctional. Advances in research techniques since then have shown the mitochondria in cancer cells to be functional across a range of tumour types. However, different tumour populations have different bioenergetic alterations in order to meet their high energy requirement; the Warburg effect is not consistent across all cancer types. This review will discuss the metabolic reprogramming of cancer, possible explanations for the high glucose consumption in cancer cells observed by Warburg, and suggest key experimental practices we should consider when studying the metabolism of cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Linling Zhang ◽  
Jingjing Ke ◽  
Shengping Min ◽  
Nan Wu ◽  
Fei Liu ◽  
...  

BackgroundTumor cells initiate hypoxia-induced mechanisms to fuel cell proliferation, invasion, and metastasis, largely mediated by low O2-responsive Hypoxia-Inducible Factor 1 Alpha (HIF-1α). Therefore, hyperbaric oxygen therapy (HBO) is now being studied in cancer patients, but its impact upon non-small-cell lung cancer (NSCLC) cell metabolism remains uncharacterized.MethodsWe employed the NSCLC cell lines A549 and H1299 for in vitro studies. Glucose uptake, pyruvate, lactate, and adenosine triphosphate (ATP) assays were used to assess aerobic glycolysis (Warburg effect). A quantitative glycolytic flux model was used to analyze the flux contributions of HIF-1α-induced glucose metabolism genes. We used a Lewis lung carcinoma (LLC) murine model to measure lung tumorigenesis in C57BL/6J mice.ResultsHBO suppressed hypoxia-induced HIF-1α expression and downstream HIF-1α signaling in NSCLC cells. One HIF-1α-induced glucose metabolism gene—Phosphofructokinase, Platelet (PFKP)—most profoundly enhanced glycolytic flux under both low- and high-glucose conditions. HBO suppressed hypoxia-induced PFKP transactivation and gene expression via HIF-1α downregulation. HBO’s suppression of the Warburg effect, suppression of hyperproliferation, and suppression of epithelial-to-mesenchymal transition (EMT) in hypoxic NSCLC cell lines is mediated by the HIF-1α/PFKP axis. In vivo, HBO therapy inhibited murine LLC lung tumor growth in a Pfkp-dependent manner.ConclusionsHBO’s repression of the Warburg effect, repression of hyperproliferation, and repression of EMT in hypoxic NSCLC cells is dependent upon HIF-1α downregulation. HIF-1α’s target gene PFKP functions as a central mediator of HBO’s effects in hypoxic NSCLC cells and may represent a metabolic vulnerability in NSCLC tumors.


Sign in / Sign up

Export Citation Format

Share Document