scholarly journals Potential of Asparagopsis armata as a Biopesticide for Weed Control under an Invasive Seaweed Circular-Economy Framework

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1321
Author(s):  
Bernardo Duarte ◽  
João Carreiras ◽  
Eduardo Feijão ◽  
Ricardo Cruz de Carvalho ◽  
Ana Rita Matos ◽  
...  

Marine macroalgae have been increasingly targeted as a source of bioactive compounds to be used in several areas, such as biopesticides. When harvesting invasive species, such as Asparagopsis armata, for this purpose, there is a two-folded opportunity: acquiring these biomolecules from a low-cost resource and controlling its spreading and impacts. The secondary metabolites in this seaweed’s exudate have been shown to significantly impact the physiology of species in the ecosystems where it invades, indicating a possible biocidal potential. Considering this in the present work, an A. armata exudate cocktail was applied in the model weed Thellungiella halophila to evaluate its physiological impact and mode of action, addressing its potential use as a natural biocide. A. armata greatly affected the test plants’ physiology, namely, their photochemical energy transduction pathway (impairing light-harvesting and chemical energy production throughout the chloroplast electron transport chain), carotenoid metabolism and oxidative stress. These mechanisms of action are similar to the ones triggered when using the common chemical pesticides, highlighting the potential of the A. armata exudate cocktail as an eco-friendly biopesticide.

Toxins ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 15
Author(s):  
Carla O. Silva ◽  
Sara C. Novais ◽  
Amadeu M. V. M. Soares ◽  
Carlos Barata ◽  
Marco F. L. Lemos

The marine red algae Asparagopsis armata is an invasive species gaining competitive advantage by releasing large amounts of toxic compounds to the surrounding invaded area. The main objective of this study was to evaluate the effects of this invasive seaweed on marine invertebrates by exposing the common prawn Palaemon elegans and the marine snail Gibbula umbilicalis to the exudate of this seaweed. The seaweed was collected and placed in a tank for 12 h in the dark in a 1:10 ratio. Afterwards the seawater medium containing the released secondary metabolites was collected for further testing. Lethal and sublethal effects of A. armata were investigated. Biochemical biomarker responses associated with energy metabolism (lactate dehydrogenase, LDH; electron transport system activity, ETS; lipid, protein and carbohydrate content) were analysed. The biomarker responses showed physiological status impairment of invertebrates after exposure to low concentrations of this algal exudate. The highest concentrations of exudate significantly increased lipid content in both organisms. In the shrimp, protein content, ETS, and LDH were also significantly increased. By contrast, these parameters were significantly decreased in G. umbilicalis. A behavioural impairment was also observed in G. umbilicalis exposed to A. armata exudate, reducing feeding consumption. These results represent an important step in the research of natural toxic exudates released to the environment and prospective effects of this seaweed in invaded communities under increasing global change scenarios.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3774
Author(s):  
Pavlos Topalidis ◽  
Cristina Florea ◽  
Esther-Sevil Eigl ◽  
Anton Kurapov ◽  
Carlos Alberto Beltran Leon ◽  
...  

The purpose of the present study was to evaluate the performance of a low-cost commercial smartwatch, the Xiaomi Mi Band (MB), in extracting physical activity and sleep-related measures and show its potential use in addressing questions that require large-scale real-time data and/or intercultural data including low-income countries. We evaluated physical activity and sleep-related measures and discussed the potential application of such devices for large-scale step and sleep data acquisition. To that end, we conducted two separate studies. In Study 1, we evaluated the performance of MB by comparing it to the GT3X (ActiGraph, wGT3X-BT), a scientific actigraph used in research, as well as subjective sleep reports. In Study 2, we distributed the MB across four countries (Austria, Germany, Cuba, and Ukraine) and investigated physical activity and sleep among these countries. The results of Study 1 indicated that MB step counts correlated highly with the scientific GT3X device, but did display biases. In addition, the MB-derived wake-up and total-sleep-times showed high agreement with subjective reports, but partly deviated from GT3X predictions. Study 2 revealed similar MB step counts across countries, but significant later wake-up and bedtimes for Ukraine than the other countries. We hope that our studies will stimulate future large-scale sensor-based physical activity and sleep research studies, including various cultures.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3950
Author(s):  
Hoora Mazaheri ◽  
Hwai Chyuan Ong ◽  
Zeynab Amini ◽  
Haji Hassan Masjuki ◽  
M. Mofijur ◽  
...  

Biodiesel is a clean, renewable, liquid fuel that can be used in existing diesel engines without modification as pure or blend. Transesterification (the primary process for biodiesel generation) via heterogeneous catalysis using low-cost waste feedstocks for catalyst synthesis improves the economics of biodiesel production. Heterogeneous catalysts are preferred for the industrial generation of biodiesel due to their robustness and low costs due to the easy separation and relatively higher reusability. Calcium oxides found in abundance in nature, e.g., in seashells and eggshells, are promising candidates for the synthesis of heterogeneous catalysts. However, process improvements are required to design productive calcium oxide-based catalysts at an industrial scale. The current work presents an overview of the biodiesel production advancements using calcium oxide-based catalysts (e.g., pure, supported, and mixed with metal oxides). The review discusses different factors involved in the synthesis of calcium oxide-based catalysts, and the effect of reaction parameters on the biodiesel yield of calcium oxide-based catalysis are studied. Further, the common reactor designs used for the heterogeneous catalysis using calcium oxide-based catalysts are explained. Moreover, the catalytic activity mechanism, challenges and prospects of the application of calcium oxide-based catalysts in biodiesel generation are discussed. The study of calcium oxide-based catalyst should continue to be evaluated for the potential of their application in the commercial sector as they remain the pivotal goal of these studies.


2019 ◽  
Vol 276 ◽  
pp. 01031 ◽  
Author(s):  
Partogi H Simatupang ◽  
Petrus Lubalu ◽  
Herry L Sianturi ◽  
Wilhelmus Bunganaen

Kupang City in Timor Island of Indonesia, as a semiarid area, has abundant solar energy sources. Based on climatology data of Kupang City in 2013-2015, the minimum and maximum average temperatures in Kupang City range from 19.3-34.8oC. Besides, dry seasons last for about 8 months (April-November). This abundance of solar energy is a potential energy resource for the manufacturing of environmentally friendly ferrogeopolymer elements. Based on previous research, the production of geopolymer material can be done optimally with dry curing treatment at 60-80oC for less than 48 hours. Therefore, in this paper, a low-cost, energy efficient oven operated by a solar energy collector was developed. This paper describes a feasibility study of the use of solar energy for curing ferro-geopolymer elements. The ferro-geopolymer elements made were beams with length 600 mm, width 100 mm and height 100 mm. Wire meshes with 6x6mm of opening were used in 5 layers. The solar energy collector system used as an oven was a zinc coated drum which was painted black outwardly and was covered by a glass plate. Using this oven, it was possible to increase the ambient temperature by 1.62 to 2,37 times. Furthermore, this oven can also increase the flexure strength of ferrogeopolymer elements about ± 25.34%. This paper shows good potential use of solar energy in the manufacturing of ferro-geopolymer elements in the semiarid region.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Grazia Daniela Femminella ◽  
Leonardo Bencivenga ◽  
Laura Petraglia ◽  
Lucia Visaggi ◽  
Lucia Gioia ◽  
...  

Diabetes mellitus (DM) and Alzheimer’s disease (AD) are two highly prevalent conditions in the elderly population and major public health burden. In the past decades, a pathophysiological link between DM and AD has emerged and central nervous system insulin resistance might play a significant role as a common mechanism; however, other factors such as inflammation and oxidative stress seem to contribute to the shared pathophysiological link. Both preclinical and clinical studies have evaluated the possible neuroprotective mechanisms of different classes of antidiabetic medications in AD, with some promising results. Here, we review the evidence on the mechanisms of action of antidiabetic drugs and their potential use in AD.


2020 ◽  
Vol 38 (11) ◽  
pp. 1222-1230
Author(s):  
Ricardo Herbé Cruz-Estrada ◽  
Javier Guillén-Mallette ◽  
Carlos Vidal Cupul-Manzano ◽  
Josué Iván Balam-Hernández

This work presents a study on the use of wood and plastic wastes generated in abundance in Merida, Mexico, to help to reduce them in order to mitigate environmental deterioration. The use of these wastes is proposed to obtain a low-cost building material. So, the escalation process (i.e., extrusion) at the pilot level to obtain a prototype of a wood–plastic composite (WPC) corrugated sheet to evaluate the technical feasibility to make a low-cost product is reported. A corrugated sheet with recycled high-density polyethylene (R-HDPE) was produced. The R-HDPE was collected from Merida’s Separation Plant. The wood came from the trimmings of different varieties of trees and shrubs that are periodically pruned. WPC sheets with virgin HDPE were prepared to assess its effect on the materials’ mechanical performance. The wood/HDPE weight ratio was 40/60. The performance of the WPC sheets was compared with that of commercial products with similar characteristics, namely acrylic and polyester sheets reinforced with fibreglass, and black asphalt-saturated cardboard sheets. Thus, the effect of natural weathering on the maximum tensile tearing force and on the maximum flexural load of the different types of sheets was evaluated. Although the mechanical performance of the WPC sheets was lower than that of the acrylic and polyacrylic sheets, their performance was much better than that of the cheap black asphalt-saturated cardboard sheets. So, they are a good option to be used as low-cost temporary roofing.


Author(s):  
Carla Silva ◽  
Marco Lemos ◽  
Rui Gaspar ◽  
Carlos Gonçalves ◽  
João Neto

Biological invasions represent a threat to ecosystems, through competition and habitat destruction, which may result in significant changes of the invaded community. Asparagopsis armata is a red macroalgae (Rodophyta) globally recognized as an invasive species. It is found from the intertidal to shallow subtidal areas, on rock or epiphytic, forming natural vegetation belts on exposed coasts. This study evaluated the variations on native intertidal seaweed and macroinvertebrate assemblages inhabiting rock pools with and without the presence of the invasive macroalgae A. armata. To achieve this, manipulation experiments on Atlantic (Portugal) rock pools were done. Three rock pools were maintained without A. armata by manual removal of macroalgae, and three others were not experimentally manipulated during the study period and A. armata was freely present. In this study the variations between different rock pools were assessed. Results showed different patterns in the macroalgae composition of assemblages but not for the macrobenthic communities. Ellisolandia elongata was the main algal species affected by the invasion of A. armata. Invaded pools tended to show less species richness, showing a more constant and conservative structure, with lower variation of its taxonomic composition than the pools not containing A. armata, where the variability between samples was always higher. Despite the importance of the achieved results, further data based on observation of long-term series are needed, in order to further understand more severe effects of the invader A. armata on native macroalgal assemblage.


2014 ◽  
Vol 67 (3) ◽  
pp. 311-316
Author(s):  
Eduardo Nozawa Caetano de Araujo ◽  
Homero Delboni Jr.

Tumbling mills are often taken as the object of optimization studies because they are a type of equipment that consume large amounts of energy. Among the current available resources to conduct such studies, mathematic modelling presents great efficiency due to its low cost, speed and reliability. The total charge and grinding media charge are very important variables to conduct modelling exercises that aim at power draw and product size distribution forecasting. However, the common measurement methods require people entering the equipment, which carries a number of adversities related to confined spaces. In this regard, this paper presents the development of a method and the prototype of a device able to measure tumbling mill charges, quickly, precisely, with low cost and, above all, ensuring safety. The result of this work is a method that allows equivalent or superior precision in comparison to the existing methods, whose main aspect is to eliminate the requirement of people entering dangerous environments, such as tumbling mills.


Sign in / Sign up

Export Citation Format

Share Document