scholarly journals Evaluation of Friction and Wear Behavior of Date Palm Fruit Syrup as an Environmentally Friendly Lubricant

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1589 ◽  
Author(s):  
Mazin Tahir ◽  
Abdul Samad Mohammed ◽  
Umar Azam Muhammad

The effect of various operational factors, such as sliding speed, normal load and temperature on the tribological properties of Date palm fruit syrup (DPFS) as an environmentally friendly lubricant, is investigated. Ball-on-disc wear tests are conducted on mild steel samples in the presence of DPFS as a lubricant under different conditions and the coefficient of friction and wear rate are measured. Scanning electron microscopy, stylus profilometry, and Fourier transform infrared spectroscopy are used to evaluate the wear tracks to determine the underlying wear mechanisms. Results showed that DPFS has excellent tribological properties in terms of low friction and low wear rates making it a potential candidate to be used as a lubricant in tribological applications.

Author(s):  
Gao Wen ◽  
Chongsheng Long ◽  
Tang Rui ◽  
Jiping Wang

Carbon fiber reinforced carbon-silicon carbide composites (C/C-SiC) were prepared by chemical volume infiltration (CVI) method and reaction melt infiltration (RMI) technique of silicon liquid to carbon reinforce carbon matrix composites. The friction and wear behaviors of C/C-SiC composites at various loads and sliding speeds were investigated by MRH-3 block-on-ring tribometer at room temperature under water lubricating conditions. Furthermore, the morphologies, phase of the worn surface and the debris were observed, examined and analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) respectively. Experimental results showed that the C/C-SiC composites had a better wear resistence, and the friction coefficient under water lubricated conditions is about 0.02–0.06. The influence of sliding speed on the friction coefficients and the specific wear rate of C/C-SiC is more obvious than that of normal load when the load is less than 200N (inclueded200N). The friction coefficient and the specific wear rate of C/C-SiC decreased as the sliding velocity increased. At the sliding speed higher than 2m/s, the friction coefficient is less than 0.02. The specific wear rates is at a low level about (2×10−7mm3/Nm–5×10−8mm3/Nm).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rama Krishna S. ◽  
Patta Lokanadham

Purpose The purpose of the present paper aims to, study the coefficient of friction and wear behavior of nickel based super alloys used in manufacturing of gas and steam turbine blades. In present paper, parametric study focuses on normal load, dry sliding velocity and contact temperature influence on coefficient of friction and wear of a nickel based super alloy material. Design/methodology/approach Experimental investigation is carried out to know the effect of varying load at constant sliding velocity and varying sliding velocity at constant load on coefficient of friction and wear behavior of nickel based super alloy material. The experiments are carried out on a nickel based super alloy material using pin on disk apparatus by load ranging from 30 N to 90 N and sliding velocity from 1.34 m/s to 2.67 m/s. The contact temperature between pin and disk is measured using K-type thermocouple for all test conditions to know effect of contact temperature on coefficient of friction and wear behavior of nickel based super alloy material. Analytical calculations are carried out to find wear rate and wear coefficient of the test specimen and are compared with experimental results for validation of experimental setup. Regression equations are generated from experimental results to estimate coefficient of friction and wear in the range of test conditions. Findings From the experimental results, it is observed that by increasing the normal load or sliding velocity, the contact temperature between the pin and disk increases, the coefficient of friction decreases and wear increases. Analysis of variance (ANOVA) is used to study the influence of individual parameters like normal load, dry sliding speed and sliding distance on the coefficient of friction and wear of nickel based super alloy material. Originality/value This is the first time to study effect of contact temperature on the coefficient of friction and wear behavior of nickel-based super alloy used for gas and steam turbine blades. Separate regression equations have been developed to determine the coefficient of friction and wear for the entire range of speed of gas turbine blades made of nickel based super alloy. The regression equations are also validated against experimental results.


2007 ◽  
Vol 280-283 ◽  
pp. 1319-1322 ◽  
Author(s):  
X. Tian ◽  
Bin Lin ◽  
W.L. Zhang

The friction and wear of the silicon carbide (SiC) and hot pressed silicon nitride (Si3N4) against zirconia (Y–TZP) sliding under dry friction and room temperature conditions were investigated with pin-on-disk tribometer at sliding speed of 0.56 m·s-1 and normal load of 50 N, 80 N and 120 N, respectively. It was found that, the coefficient of friction and wear rate are dependent on the test duration as well as the normal load. Through analyzing and comparing, the wear rates of the two frictional couples both are in the 10-6 mm3 (N·m)-1. Based on the variety regulation of the wear maps, the wear mechanisms of the two couples were analyzed. Between the two couples, the friction and wear characteristics of the SiC/ZrO2 couple are better than the Si3N4/ZrO2 couple’s.


Author(s):  
M. A. Oomen ◽  
R. Bosman ◽  
P.M. Lugt

Reliable traction between wheel and rail is an important issue in the railway industry. To reduce variations in the coefficient of friction, so-called “friction modifiers” (carrier with particles) are used. Twin-disk tests were done with three commercial friction modifiers, based on different compositions of carrier and particles, to characterize their friction and wear behavior. It is shown experimentally that the influence of the carrier cannot be neglected just after application and very low (0.01-0.05) frictional values are observed in a fully flooded situation. However, starvation occurs quickly and friction values will become relatively stable at an intermediate level around μ=0.2 until the friction modifier is consumed and a new dose is required. After the carrier is pushed out of the running track the particles in the contact dominate the tribological performance. The level of friction is a function of total rolling distance, effective sliding length and sum velocity. The most dominant factor depends on the friction modifier and the working mechanism for friction stabilization. It is also shown that the wear rates during tests do not depend significantly on slip, which makes it possible to predict wear behavior. Wear rates are dependent on the type of friction modifier used.


2021 ◽  
Vol 144 (1) ◽  
Author(s):  
Md Syam Hasan ◽  
Amir Kordijazi ◽  
Pradeep K. Rohatgi ◽  
Michael Nosonovsky

Abstract Data-driven analysis and machine learning (ML) algorithms can offer novel insights into tribological phenomena by establishing correlations between material and tribological properties. We developed ML algorithms using tribological data available in the literature for predicting the coefficient of friction (COF) and wear-rate of self-lubricating aluminum graphite (Al/Gr) composites. We collected data on effects of material variables (graphite content, hardness, ductility, yield strength, silicon carbide content, and tensile strength), processing procedure, heat treatment and tribological test variables (normal load, sliding speed, and sliding distance) on tribological properties and established two-parameter relationships. These data are analyzed using several ML algorithms: artificial neural network (ANN), K nearest neighbor (KNN), support vector machine (SVM), gradient boosting machine (GBM), and random forest (RF). The trained ML models can predict the tribological behavior from material variables and test conditions, beyond what is possible from two-parameter correlations. GBM outperformed other ML algorithms in predicting friction behavior, while RF had the best prediction of the wear behavior. ML analysis identified graphite content and hardness and as the most significant variables in predicting the COF, while graphite content and sliding speed were the most dominant variables for wear-rates.


2021 ◽  
Vol 406 ◽  
pp. 229-239
Author(s):  
Mohamed Nabil Bachirbey ◽  
Mohammed Seyf Eddine Bougoffa ◽  
Chahrazed Benouali ◽  
Tahar Sayah

The present work aims at the study of the dry disc pion contact and the complex phenomenon of the wear as well as the sliding friction of our sample elaborated by a hot isotactic compression and the pion. This study consists in determining the coefficient of friction and the influence of the tribological parameters on this phenomenon as well as determining the loss of mass and the wear rate of study sample. In order to enhance the assurance of the validity of the results of tribological study of Ni-Cr-B-Si-C-W alloy in laboratories and compare that to the tribological conditions in reality and industries. This work presents the results of the new approach to compares the wear behavior of the sample between a theoretical study (tribometer)and another in service (a test bench) that reproduces approximately the same conditions as the tribometer (normal load, sliding speed and distance traveled) by measuring the loss of mass and wear rate.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Jin Wei ◽  
Gongjun Cui

The tribological properties of Fe–Cr–B alloys were studied sliding against SiC ball in liquid paraffin oil. The boron played an important role in improving tribological properties of alloys. The friction coefficients of alloys decreased with the increase of normal load and sliding speed. The Fe–Cr–B alloys showed better wear resistance than that of Fe–Cr alloy. Fe-21 wt.% Cr-7 wt.% B alloy had the best tribological properties. The wear mechanism of Fe–Cr alloy was abrasive wear and plastic deformation. The wear mechanism of Fe–Cr–B alloys was microploughing and fatigue flaking pits.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1336
Author(s):  
Jorge Caessa ◽  
Todor Vuchkov ◽  
Talha Bin Yaqub ◽  
Albano Cavaleiro

Friction and wear contribute to high energetic losses that reduce the efficiency of mechanical systems. However, carbon alloyed transition metal dichalcogenide (TMD-C) coatings possess low friction coefficients in diverse environments and can self-adapt to various sliding conditions. Hence, in this investigation, a semi-industrial magnetron sputtering device, operated in direct current mode (DC), is utilized to deposit several molybdenum-selenium-carbon (Mo-Se-C) coatings with a carbon content up to 60 atomic % (at. %). Then, the carbon content influence on the final properties of the films is analysed using several structural, mechanical and tribological characterization techniques. With an increasing carbon content in the Mo-Se-C films, lower Se/Mo ratio, porosity and roughness appeared, while the hardness and compactness increased. Pin-on-disk (POD) experiments performed in humid air disclosed that the Mo-Se-C vs. nitrile butadiene rubber (NBR) friction is higher than Mo-Se-C vs. steel friction, and the coefficient of friction (CoF) is higher at 25 °C than at 200 °C, for both steel and NBR countersurfaces. In terms of wear, the Mo-Se-C coatings with 51 at. % C showed the lowest specific wear rates of all carbon content films when sliding against steel. The study shows the potential of TMD-based coatings for friction and wear reduction sliding against rubber.


2014 ◽  
Vol 81 (7) ◽  
Author(s):  
N. W. Khun ◽  
H. Zhang ◽  
C. Y. Yue ◽  
J. L. Yang

Self-lubricating and wear resistant epoxy composites were developed via incorporation of wax-containing microcapsules. The effects of microcapsule size and content and working parameters on the tribological properties of epoxy composites were systematically investigated. The incorporation of microcapsules dramatically decreased the friction and wear of the composites from those of the epoxy. The increased microcapsule content or the incorporation of larger microcapsules decreased the friction and wear of the epoxy composites due to the larger amount of released wax lubricant via the rupture of microcapsules during the wear test. The friction of the composites decreased with increased normal load as a result of the promoted wear of the composites and the increased release of the wax lubricant.


2021 ◽  
pp. 36-40
Author(s):  
F.F. Yusubov

Tribotechnical indicators of environmentally friendly frictional composite materials with phenol-formaldehyde matrix are studied. Friction tests were carried out on a MMW-1 vertical tribometer according to the pin-on-disk scheme. Keywords: brake pads, composites, friction and wear, plasticizers, degradation, porosity. [email protected]


Sign in / Sign up

Export Citation Format

Share Document