scholarly journals Sulfated Hyaluronan Modulates the Functional Properties and Matrix Effectors Expression of Breast Cancer Cells with Different Estrogen Receptor Status

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1916
Author(s):  
Christos Koutsakis ◽  
Anastasia-Gerasimoula Tavianatou ◽  
Dimitris Kokoretsis ◽  
Georgios Baroutas ◽  
Nikos K. Karamanos

Hyaluronan (HA) is an extracellular matrix glycosaminoglycan (GAG) that plays a pivotal role in breast cancer. While HA is the only GAG not normally substituted with sulfate groups, sulfated hyaluronan (sHA) has previously been used in studies with promising antitumor results. The aim of the present study was to evaluate the effects sHA fragments have on breast cancer cells with different estrogen receptor (ER) status. To this end, ERα-positive MCF-7, and ERβ-positive MDA-MB-231 cells were treated with non-sulfated HA or sHA fragments of 50 kDa. The functional properties of the breast cancer cells and the expression of key matrix effectors were investigated. According to the results, sHA attenuates cell proliferation, migration, and invasion, while increasing adhesion on collagen type I. Furthermore, sHA modulates the expression of epithelial-to-mesenchymal transition (EMT) markers, such as e-cadherin and snail2/slug. Additionally, sHA downregulates matrix remodeling enzymes such as the matrix metalloproteinases MT1-MMP, MMP2, and MMP9. Notably, sHA exhibits a stronger effect on the breast cancer cell properties compared to the non-sulfated counterpart, dependent also on the type of cancer cell type. Consequently, a deeper understanding of the mechanism by which sHA facilitate these processes could contribute to the development of novel therapeutic strategies.

2020 ◽  
pp. jbc.RA120.016345
Author(s):  
Qiong Wu ◽  
Cheng Zhang ◽  
Keren Zhang ◽  
Qiushi Chen ◽  
Sijin Wu ◽  
...  

GalNAc-type O-glycosylation, initially catalyzed by polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), is one of the most abundant and complex post-translational modifications of proteins. Emerging evidence has proven that aberrant ppGalNAc-Ts are involved in malignant tumor transformation. However, the exact molecular functions of ppGalNAc-Ts are still unclear. Here, the role of one isoform, ppGalNAc-T4, in breast cancer cell lines was investigated. The expression of ppGalNAc-T4 was found to be negatively associated with migration of breast cancer cells. Loss-of function studies revealed that ppGalNAc-T4 attenuated the migration and invasion of breast cancer cells by inhibiting the epithelial-mesenchymal transition (EMT) process. Correspondingly, transforming growth factor beta (TGF-β) signaling, which is the upstream pathway of EMT, was impaired by ppGalNAc-T4 expression. ppGalNAc-T4 knock-out decreased O-GalNAc modification of TGF-β type Ⅰ and Ⅱ receptor (TβR Ⅰ and Ⅱ) and led to the elevation of TGF-β receptor dimerization and activity. Importantly, a peptide from TβR Ⅱ was first identified as the naked peptide substrate of ppGalNAc-T4 with a higher affinity than ppGalNAc-T2. Further, Ser31, corresponding to the extracellular domain of TβR Ⅱ, was identified as the O-GalNAcylation site upon in vitro glycosylation by ppGalNAc-T4. The O-GalNAc-deficient S31A mutation enhanced TGF-β signaling activity and EMT in breast cancer cells. Together, these results identified a novel mechanism of ppGalNAc-T4-catalyzed TGF-β receptors O-GalNAcylation that suppresses breast cancer cell migration and invasion via the EMT process. Targeting ppGalNAc-T4 may be a potential therapeutic strategy for breast cancer treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2021 ◽  
Author(s):  
Ping Zhou ◽  
Bo Liu ◽  
Mingming Luan ◽  
Na Li ◽  
Bo Tang

Cancer cell migration and invasion are initial steps for tumor metastasis that increases patient mortality. Tumor microenvironment is characterized by hypoxic and low nutrient-containing. Previous studies have suggested that hypoxia...


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2256
Author(s):  
Konstantina Kyriakopoulou ◽  
Eirini Riti ◽  
Zoi Piperigkou ◽  
Konstantina Koutroumanou Sarri ◽  
Heba Bassiony ◽  
...  

Breast cancer accounts for almost one in four cancer diagnoses in women. Studies in breast cancer patients have identified several molecular markers, indicators of aggressiveness, which help toward more individual therapeutic approaches. In triple-negative breast cancer (TNBC), epidermal growth factor receptor (EGFR) overexpression is associated with increased metastatic potential and worst survival rates. Specifically, abnormal EGFR activation leads to altered matrix metalloproteinases’ (MMPs) expression and, hence, extracellular matrix (ECM) degradation, resulting in induced migration and invasion. The use of matrix substrates for cell culture gives the opportunity to mimic the natural growth conditions of the cells and their microenvironment, as well as cell–cell and cell–matrix interactions. The aim of this study was to evaluate the impact of EGFR inhibition, estrogen receptor beta (ERβ) and different matrix substrates [type I collagen and fibronectin (FN)] on the functional properties, expression of MMPs and cell morphology of ERβ-positive TNBC cells and shERβ ones. Our results highlight EGFR as a crucial regulator of the expression and activity levels of MMPs, while ERβ emerges as a mediator of MMP7 and MT1-MMP expression. In addition, the EGFR/ERβ axis impacts the adhesion and invasion potential of breast cancer cells on collagen type I. Images obtained by scanning electron microscope (SEM) from cultures on the different matrix substrates revealed novel observations regarding various structures of breast cancer cells (filopodia, extravesicles, tunneling nanotubes, etc.). Moreover, the significant contribution of EGFR and ERβ in the morphological characteristics of these cells is also demonstrated, hence highlighting the possibility of dual pharmacological targeting.


2019 ◽  
Vol 20 (15) ◽  
pp. 3616 ◽  
Author(s):  
Xinping Li ◽  
Siwei Deng ◽  
Xinyao Pang ◽  
Yixiao Song ◽  
Shiyu Luo ◽  
...  

Breast cancer, the most prevalent cancer type among women worldwide, remains incurable once metastatic. Long noncoding RNA (lncRNA) and microRNA (miRNA) play important roles in breast cancer by regulating specific genes or proteins. In this study, we found miR-133b was silenced in breast cancer cell lines and in breast cancer tissues, which predicted poor prognosis in breast cancer patients. We also confirmed that lncRNA NEAT1 was up-regulated in breast cancer and inhibited the expression of miR-133b, and identified the mitochondrial protein translocase of inner mitochondrial membrane 17 homolog A (TIMM17A) that serves as the target of miR-133b. Both miR-133b knockdown and TIMM17A overexpression in breast cancer cells promoted cell migration and invasion both in vitro and in vivo. In summary, our findings reveal that miR-133b plays a critical role in breast cancer cell metastasis by targeting TIMM17A. These findings may provide new insights into novel molecular therapeutic targets for breast cancer.


2020 ◽  
Vol 19 ◽  
pp. 153303382097967
Author(s):  
Jin Zhang ◽  
Nan Shao ◽  
Xiaoyu Yang ◽  
Chuanbo Xie ◽  
Yawei Shi ◽  
...  

The microRNA-200 (miR-200) family has been reported to be vital for the inhibition of epithelial-to-mesenchymal transition (EMT) in tumor cells. The miR-200 family represents a complex multi-factorial regulatory network which has not been well described in breast cancer. This study aimed to clarify the underlying regulatory association between IL-8 and miR-200 family in the process of EMT in breast cancer cell. In estrogen-receptor (ER) positive breast cancer cell line MCF-7, IL-8 overexpression cells were performed by lentivirus transfection as endogenous regulation with additional exogenous IL-8 stimulation. Transient overexpressions of miR-200 family were performed after endogenous or exogenous IL-8 overexpression in MCF-7 cells. IL-8 knockdown cells were constructed via siRNA and shRNA transfection in triple negative breast cancer cell line MDA-MB-231. N-cadherin, vimentin and ZEB2 were down-regulated and E-cadherin was up-regulated in IL-8 knockdown group compared with control group. On the other hand, N-cadherin, vimentin and ZEB2 were up-regulated and E-cadherin was down-regulated in IL-8 overexpression group compared with control group. This indicated IL-8 promotes EMT in breast cancer cells. Transwell assay showed that IL-8 increased the migration and invasiveness of tumor cells. Furthermore, we performed transient overexpression of miR-200 family after endogenous or exogenous IL-8 overexpression in MCF-7 cells, which showed that the miR-200 family could inhibit EMT induced by IL-8. IL-8 promoted EMT via downregulation of miR-200 family expression in breast cancer cells and increases tumor cell migration and invasion.


2019 ◽  
Vol 8 (2) ◽  
pp. 213 ◽  
Author(s):  
Marco Franchi ◽  
Valentina Masola ◽  
Gloria Bellin ◽  
Maurizio Onisto ◽  
Konstantinos-Athanasios Karamanos ◽  
...  

: Interactions of cancer cells with matrix macromolecules of the surrounding tumor stroma are critical to mediate invasion and metastasis. In this study, we reproduced the collagen mechanical barriers in vitro (i.e., basement membrane, lamina propria under basement membrane, and deeper bundled collagen fibers with different array). These were used in 3D cell cultures to define their effects on morphology and behavior of breast cancer cells with different metastatic potential (MCF-7 and MDA-MB-231) using scanning electron microscope (SEM). We demonstrated that breast cancer cells cultured in 2D and 3D cultures on different collagen substrates show different morphologies: i) a globular/spherical shape, ii) a flattened polygonal shape, and iii) elongated/fusiform and spindle-like shapes. The distribution of different cell shapes changed with the distinct collagen fiber/fibril physical array and size. Dense collagen fibers, parallel to the culture plane, do not allow the invasion of MCF-7 and MDA-MB-231 cells, which, however, show increases of microvilli and microvesicles, respectively. These novel data highlight the regulatory role of different fibrillar collagen arrays in modifying breast cancer cell shape, inducing epithelial-to-mesenchymal transition, changing matrix composition and modulating the production of extracellular vesicles. Further investigation utilizing this in vitro model will help to demonstrate the biological roles of matrix macromolecules in cancer cell invasion in vivo.


Sign in / Sign up

Export Citation Format

Share Document