scholarly journals Predicting Angiogenesis by Endothelial Progenitor Cells Relying on In-Vitro Function Assays and VEGFR-2 Expression Levels

Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 717 ◽  
Author(s):  
Nadin Sabbah ◽  
Tal Tamari ◽  
Rina Elimelech ◽  
Ofri Doppelt ◽  
Utai Rudich ◽  
...  

Clinical trials have demonstrated the safety and efficacy of autologous endothelial progenitor cell (EPC) therapy in various diseases. Since EPCs’ functions are influenced by genetic, systemic and environmental factors, the therapeutic potential of each individual EPCs is unknown and may affect treatment outcome. Therefore, our aim was to compare EPCs function among healthy donors in order to predict blood vessel formation (angiogenesis) before autologous EPC transplantation. Human EPCs were isolated from the blood of ten volunteers. EPCs proliferation rate, chemoattractant ability, and CXCR4 mRNA levels were different among donors (p < 0.0001, p < 0.01, p < 0.001, respectively). A positive correlation was found between SDF-1, CXCR4, and EPCs proliferation (R = 0.736, p < 0.05 and R = 0.8, p < 0.01, respectively). In-vivo, blood vessels were counted ten days after EPCs transplantation in a subcutaneous mouse model. Mean vessel density was different among donors (p = 0.0001); nevertheless, donors with the lowest vessel densities were higher compared to control (p < 0.05). Finally, using a linear regression model, a mathematical equation was generated to predict blood vessel density relying on: (i) EPCs chemoattractivity, and (ii) VEGFR-2 mRNA levels. Results reveal differences in EPCs functions among healthy individuals, emphasizing the need for a potency assay to pave the way for standardized research and clinical use of human EPCs.

2009 ◽  
Vol 87 (6) ◽  
pp. 933-942 ◽  
Author(s):  
Li Yang ◽  
Hai-wei Zhang ◽  
Rong Hu ◽  
Yong Yang ◽  
Qi Qi ◽  
...  

Wogonin, a naturally occurring flavonoid, has been shown to have tumor therapeutic potential both in vitro and in vivo. To better understand its anticancer mechanism, we examined the effect of wogonin on human cervical carcinoma HeLa cells. In this study, we observed that G1 phase arrest was involved in wogonin-induced growth inhibition in HeLa cells. Over a 24 h exposure of HeLa cells to 90 µmol·L–1 wogonin, the promoters of G1–S transition, including cyclin D1/Cdk4 and pRb, decreased within 12 h and E2F-1 depleted in the nucleus at the same time. As the G1 phase arrest developed, p53 and the Cdk inhibitor p21Cip1 elevated both at protein and mRNA levels. Furthermore, the up-regulation of p21Cip1 induced by wogonin was dramatically inhibited by siRNA-mediated p53 gene silencing. Collectively, our data suggested that wogonin induced G1 phase arrest in HeLa cells by modulating several key G1 regulatory proteins, such as Cdk4 and cyclin D1, as well as up-regulation of a p53-midiated p21Cip1 expression. This mechanism of wogonin may play an important role in the killing of cancerous cells and offer a potential mechanism for its anticancer action in vivo.


Oncogenesis ◽  
2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin J. Pridham ◽  
Farah Shah ◽  
Kasen R. Hutchings ◽  
Kevin L. Sheng ◽  
Sujuan Guo ◽  
...  

AbstractCircumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1–a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide–inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit β (PIK3CB, also called PI3Kβ or p110β), suggesting that Cx43 activates PIK3CB/p110β independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110β, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110β-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110β together is an effective therapeutic approach for overcoming chemoresistance.


2021 ◽  
Author(s):  
Mathilda Chow ◽  
Yan Gu ◽  
Lizhi He ◽  
Xiaozeng Lin ◽  
Ying Dong ◽  
...  

Abstract Background: Papillary renal cell carcinoma (pRCC) is an aggressive but minor type of RCC compared to the main RCC type, clear cell RCC. The current understanding and management of pRCC remain poor. OIP5 possesses oncogenic functions; its contributions to pRCC remain unknown.Methods: OIP5 expression in pRCC at both the protein and mRNA levels was determined using tissue microarray and TCGA dataset. OIP5 was ectopically expressed in metastatic ACHN pRCC cells; xenografts were performed with gene expression profiled by RNA-seq. Differentially expressed genes (DEGs) were analyzed for prognostic potential and impact on pRCC. The effect of PLK1, an OIP5-related DEG, on pRCC tumor growth in vivo was examined.Results: OIP5 expression is upregulated in pRCC. The upregulation associates with pRCC adverse features (T1P<T2P<CIMP, Stage1+2<Stage 3<Stage 4, and N0<N1) and effectively stratifies the fatality risk. OIP5 promotes ACHN pRCC cell proliferation and xenograft formation. RNA-seq reveals network alterations related to immune regulation, metabolism, and hypoxia in ACHN OIP5 tumors compared to empty vector tumors. A set of DEGs was derived from ACHN OIP5 xenografts and primary pRCCs (n=282) contingent to OIP5 upregulation; both DEG sets share 66 overlap genes. Overlap66 effectively predicts overall survival (p<2e-16) and relapse (p<2e-16) possibilities. The prediction is associated with a good out-of-sample performance, supporting its clinical applications. High-risk tumors stratified by Overlap66 risk score possess an immune suppressive environment, evident by elevations in Treg cells and PD1 expression in CD8 T cells. Upregulation of PLK1 occurs in both xenografts and primary pRCC tumors with OIP5 elevations. PLK1 displays a synthetic lethality relationship with OIP5; PLK1 inhibitor BI2356 causes G2/M arrest in ACHN OIP5 cells in vitro and significantly inhibits the growth of xenografts formed by ACHN OIP5 cells in vivo. Conclusions: Our research reveals that OIP5 and its network possess robust prognostic and therapeutic potentials; the prognostic value of Overlap66 and the therapeutic potential of PLK1 inhibitors may pave the way for developing personalized medicine for pRCC management.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 85 ◽  
Author(s):  
Feiya Sheng ◽  
Lele Zhang ◽  
Songsong Wang ◽  
Lele Yang ◽  
Peng Li

Microglia mediated neuronal inflammation has been widely reported to be responsible for neurodegenerative disease. Deacetyl ganoderic acid F (DeGA F) is a triterpenoid isolated from Ganoderma lucidum, which is a famous edible and medicinal mushroom used for treatment of dizziness and insomnia in traditional medicine for a long time. In this study the inhibitory effects and mechanisms of DeGA F against lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo were investigated. On murine microglial cell line BV-2 cells, DeGA F treatment inhibited LPS-triggered NO production and iNOS expression and affected the secretion and mRNA levels of relative inflammatory cytokines. DeGA F inhibited LPS-induced activation of the NF-κB pathway, as evidenced by decreased phosphorylation of IKK and IκB and the nuclear translocation of P65. In vivo, DeGA F treatment effectively inhibited NO production in zebrafish embryos. Moreover, DeGA F suppressed the serum levels of pro-inflammatory cytokines, including TNF-α and IL-6 in LPS-stimulated mice model. DeGA F reduced inflammatory response by suppressing microglia and astrocytes activation and also suppressed LPS-induced NF-κB activation in mice brains. Taken together, DeGA F exhibited remarkable anti-inflammatory effects and promising therapeutic potential for neural inflammation associated diseases.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 19-19
Author(s):  
Alejandro Roisman ◽  
Emmalee R. Adelman ◽  
Natalia Weich ◽  
Aristeidis G. Telonis ◽  
Dean Wade ◽  
...  

Abstract Aging causes a gradual decline in hematopoietic stem cell (HSC) function, which increases the risk for hematological malignancies. While much has been done in murine models, human HSC aging impairment is less understood. We recently showed that Krüppel-like transcription factor 6 (KLF6) is among the top downregulated genes during human HSC aging, which correlates with H3K27ac loss at several upstream putative enhancers. Moreover, loss of KLF6 in human CD34 + cells resulted in impaired in vitro differentiation, increased colony-forming potential and a transcriptional profile similar to that of aged CD34 + CD38 - cells. We hypothesized that age-acquired deregulation of KLF6 may be a key player in age-related HSC dysfunction and sought to fully characterize this. Thus, we isolated CD34 + cells from young (&lt;32 y.o) and aged (&gt;65 y.o.) healthy donors and performed CRISPR-Cas9 genome editing and transcriptional activation of KLF6, respectively, followed by epigenetic and transcriptional reprogramming, in vivo hematopoietic reconstitution, and analysis of DNA damage, apoptosis, and reactive oxygen species (ROS) levels. KLF6 knock-out (KO) and non-targeting control (NTC) cells from young healthy donors were engrafted into immunodeficient NSGS mice. Hematopoietic reconstitution analysis showed that KLF6 KO cells led to increased myeloid and reduced lymphoid reconstitution in peripheral blood (PB; p&lt;1.62 -7) and an increase in immunophenotypically defined HSC and CD34 + CD38 - progenitor fractions in the bone marrow (BM; p=0.02, and p=0.04, respectively). H3K27ac analysis of KLF6 KO cells revealed a loss of 3,390 ChIP-seq peaks (FDR &lt; 0.05) and 285 peaks gained. Functional annotation using ChIP-Enrich showed that H3K27ac loss associates with myeloid homeostasis, erythroid differentiation and oxidative stress (FDR &lt; 0.05). Three putative enhancer (E) regions upstream of the KLF6 locus showed loss of H3K27ac with aging. Depletion of the E1 but not E2 or E3 regions phenocopied in vitro and in vivo findings of KLF6 KO. Transcription factor (TF) ChIP-seq data analysis revealed FLI1, ERG, and RUNX1 binding overlapping the E1 region. Knockdown of FLI1 but not ERG or RUNX1 led to an increase in KLF6. Notably, FLI1 mRNA levels, but not ERG or RUNX1, are increased during normal aging. We next performed in vitro KLF6 activation in aged CD34 + (KLF6a) cells using a dCas9-VP64 system to test if we could rejuvenate these cells. KLF6a cells exhibited a decrease in their in vitro myeloid differentiation potential, compared to aged NTC CD34 + cells (p&lt;0.0041), and behaved instead similar to young controls. ChIP-seq analysis of KLF6a showed marked decrease of H3K4me1 (n=3,273 peaks) with relatively few regions with increased H3K4me1 (n=602) (FDR &lt; 0.05). In contrast, we observed an increase in H3K27ac (n=3,361 peaks) with only 71 peaks lost compared to aged NTC (FDR &lt; 0.05). Regions that gained H3K27ac in KLF6a were associated with platelet activation, cell junction and adhesion. In vivo analysis of KLF6a cells injected into NSGS mice revealed a significant reduction in the PB myeloid fraction compared to NTC (p&lt;1.2-8), with a concomitant expansion in the lymphoid compartment (p&lt;4.4 -11). BM composition analysis at week 16 showed a decrease in the HSC fraction in KLF6a cells (p=0.0029) as well as a reduction in CD34 +CD38 -, CD34 +CD38 + and MEPs (p=0.036, p&lt;0.0001 and p=0.041, respectively). We next examined the impact of KLF6 modulation on DNA damage and observed that young human KLF6 KO cells had a significant increase in gH2AX and 53BP1 (p&lt;0.0001, for both) whereas KLF6a in aged CD34 + cells exhibited reduced gH2AX and 53BP1 foci in comparison to aged NTC (p&lt;0.0001, for both). In addition, apoptotic levels in KLF6 KO cells were higher than in NTC cells (p=0.006) whereas aged KLF6a cells showed a reduction in the incidence of apoptotic cells compared to NTC (p=0.019). Finally, ROS analysis in young KLF6 KO showed increased levels of total and mitochondrial ROS compared to NTC (p=0.0008 and p&lt;0.0001, respectively) whereas both ROS fractions were reduced in KLF6a cells (p=0.0002 and p&lt;0.0001, respectively). In summary, these results show that the FLI1-KLF6 axis plays a key role in regulating HSPC aging and that KLF6 is required for normal HSPC function and differentiation. In addition, normalization of KLF6 levels in aged HSPCs resulted in reprogramming and rejuvenation HSPCs, confirming the central role of this TF in aging HSPC biology. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document