scholarly journals Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 480
Author(s):  
Maryam Ghanbari-Movahed ◽  
Tea Kaceli ◽  
Arijit Mondal ◽  
Mohammad Hosein Farzaei ◽  
Anupam Bishayee

Camptothecin (CPT), a natural plant alkaloid, has indicated potent antitumor activities via targeting intracellular topoisomerase I. The promise that CPT holds in therapies is restricted through factors that include lactone ring instability and water insolubility, which limits the drug oral solubility and bioavailability in blood plasma. Novel strategies involving CPT pharmacological and low doses combined with nanoparticles have indicated potent anticancer activity in vitro and in vivo. This systematic review aims to provide a comprehensive and critical evaluation of the anticancer ability of nano-CPT in various cancers as a novel and more efficient natural compound for drug development. Studies were identified through systematic searches of PubMed, Scopus, and ScienceDirect. Eligibility checks were performed based on predefined selection criteria. Eighty-two papers were included in this systematic review. There was strong evidence for the association between antitumor activity and CPT treatment. Furthermore, studies indicated that CPT nano-formulations have higher antitumor activity in comparison to free CPT, which results in enhanced efficacy for cancer treatment. The results of our study indicate that CPT nano-formulations are a potent candidate for cancer treatment and may provide further support for the clinical application of natural antitumor agents with passive targeting of tumors in the future.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1838
Author(s):  
Naglaa M. Ahmed ◽  
Mahmoud M. Youns ◽  
Moustafa K. Soltan ◽  
Ahmed M. Said

Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79 %) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.


RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24376-24385 ◽  
Author(s):  
Wen-Bin Kuang ◽  
Ri-Zhen Huang ◽  
Yi-Lin Fang ◽  
Gui-Bin Liang ◽  
Chen-Hui Yang ◽  
...  

A series of novel 2-chloro-3-(1H-benzo[d]imidazol-2-yl)quinoline derivatives were designed and synthesized as antitumor agents under the combination principle. The antitumor activity and mechanisms were then evaluated.


2018 ◽  
Vol 10 (2) ◽  
pp. 195-210
Author(s):  
M. Shahriar ◽  
M. A. Bhuiyan ◽  
M. S. Rana

The methanol, ethanol and chlorofom leaf extracts of Satkara, Citrus assamensis (family: Rutaceae), were subjected to in vitro anti-bacterial, thrombolytic, membrane stabilizing and in vivo anti-inflammatory and antitumor activity tests. The chloroform extract of C. assamensis showed the most important spectrum of activity against Bacillus subtilis, Bacillus cereus, Sarcina lutea among 6 gram positive and against 11 gram negative bacteria at the concentration of 1000 μg/disc, while the range of zones of inhibition were within 7-16 mm. Among the tested three extracts CHCl3 extract showed potent thrombolytic activity and hypotonic solution induced haemolytic activity where the percentages of inhibition were found to be 35% and 55% respectively. All the extracts established significant (p<0.05) anti-inflammatory effect by regulating biphasic inflammatory process induced by carrageenan. The leaf extract dose-dependently and significantly decreases the number of EAC cell count and inhibition of cell growth in comparison to the EAC control and standard. The results obtained in the present study indicate that, C. assamensis leaf can be a potential source of anti-bacterial, thrombolytic, membrane stabilizing, anti-inflammatory and antitumor agents.


2010 ◽  
Vol 38 (06) ◽  
pp. 1107-1114 ◽  
Author(s):  
Shougang Jiang ◽  
Yu Zhang ◽  
Yuangang Zu ◽  
Zhuo Wang ◽  
Yujie Fu

Water decoctions from the leaves of Taxus cuspidata are used in traditional Chinese medicine to treat cancer, suggesting that water soluble constituents from these leaves may possess anticancer properties. Interestingly, hydrophilic paclitaxel derivatives, as opposed to paclitaxel itself, can be detected by high pressure liquid chromatography in water decoctions from these leaves. The remainder extracts, which are free of paclitaxel and hydrophilic paclitaxel derivatives, from the T. cuspidata leaves were investigated for antitumor activity in vivo and in vitro for the first time in this study. EE80B, 7-xylosyl-10-deacetylpaclitaxel and 7-xylosyl-10-deacetylpaclitaxel C displayed the most antitumor activity in vivo. However, in vitro studies with tumor cell lines showed that EE80B had a significantly smaller antitumor effect than paclitaxel. We hypothesize that water decoctions from T. cuspidata leaves exhibit antitumor effects in vivo, which may be aided by the activation of specific host mechanisms (e.g. stimulation of antitumor immunity) which are not present in vitro.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jinbo Fu ◽  
Yiming Xu ◽  
Yushan Yang ◽  
Yun Liu ◽  
Lulu Ma ◽  
...  

AbstractChemoresistance to 5-fluorouracil (5-Fu)-based chemotherapy is a leading obstacle in achieving effective treatment for colorectal cancer (CRC). Typically, NF-κB activation induced by the chemotherapeutics themselves is an important cause resulting in chemoresistance. Specifically, NF-κB activation can inhibit tumor cell apoptosis and induce chemoresistance. Drugs that can prevent NF-κB activation induced by chemotherapeutics are urgently needed to overcome chemoresistance. Obviously, aspirin is one of these agents, which has been demonstrated to possess antitumor activities and as an inhibitor of NF-κB. The current study aimed to investigate whether aspirin was able to overcome the chemoresistance to 5-Fu in CRC, together with the potential synergistic mechanisms. Our results suggested that aspirin remarkably potentiated the inhibitory effect of 5-Fu on the growth and invasion of resistant cells in vitro. In vivo, aspirin markedly enhanced the antitumor activity of 5-Fu in suppressing tumor growth and metastasis, and down-regulating the expression of NF-κB-regulated genes in the 5-Fu-resistant cells. Obviously, aspirin completely eradicated the 5-Fu-induced NF-κB activation, without inducing pronounced adverse effects. Taken together, findings in this study suggest that aspirin can reverse chemoresistance and potentiate the antitumor effect of 5-Fu, which is achieved through abolishing the 5-Fu-induced NF-κB activation, suggesting that aspirin may be a promising adjuvant therapeutic agent for CRC.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Jia-zhi Wang ◽  
Juan Li ◽  
Ping Zhao ◽  
Wen-tao Ma ◽  
Xie-he Feng ◽  
...  

The antitumor activities of ethyl acetate extracts fromSelaginella doederleiniiHieron (SD extracts)in vitroandin vivoand its possible mechanism were investigated. HPLC method was developed for chemical analysis. SD extracts were submitted to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay on different cells, flow cytometry, and RT-PCR analysis using HepG2 cell and antitumor activityin vivousing H-22 xenograft tumor mice. Six biflavonoids from SD extracts were submitted to molecular docking assay. The results showed that SD extracts had considerable antitumor activityin vitroandin vivowithout obvious toxicity on normal cells and could induce cell apoptosis. The mechanisms of tumorigenesis and cell apoptosis induced by SD extracts may be associated with decreasing the ratio of bcl-2 and bax mRNA level, activating caspase-3, suppressing survivin, and decreasing the gene expression of COX-2, 5-LOX, FLAP, and 12-LOX mRNA. The main active component in SD extracts is biflavonoids and some exhibited strong interactions with COX-2, 5-LOX, 12-LOX, and 15-LOX. These results offering evidence of possible mechanisms of SD extracts suppress cell proliferation and promote apoptosis and provide the molecular theoretical basis of clinical application ofS. doederleiniifor cancer therapy.


2021 ◽  
Author(s):  
Li-Qin Qin ◽  
Zu-Zhuang Wei ◽  
Lin Yang ◽  
Qi-Pin Qin ◽  
Jia-Jing Zeng ◽  
...  

Abstract Two mononuclear Pt(II) compounds, [Pt(BQL1)Cl]Cl (BQL1-Pt) and [Pt(BQL2)Cl]Cl (BQL2-Pt) with [5-(benzo[4,5]furo[3,2-b]quinolin-11-yloxy)-pentyl]-bis-pyridin-2-ylmethyl-amine (BQL1) and [9-(benzo[4,5]furo[3,2-b]quinolin-11-yloxy)-nonyl]-bis-pyridin-2-ylmethyl-amine (BQL2), were prepared as new chemotypes for potential antitumor agents. This study evaluated the influence of cryptolepine derivatives in BQL1-Pt, 2,2′-dipicolylamine Pt(II) complex, and BQL2-Pt on cellular Pt(II) accumulation, cytotoxicity, and in vitro and in vivo antitumor activities against T-24 cancer cells and normal HL-7702 cells. BQL1-Pt and BQL2-Pt displayed cytotoxic activities in the micromole range (1.3±0.1 and 0.2±0.2 μM, respectively) on T-24 cancer cells; however, they did not exhibit any toxicity against HL-7702 cells. They triggered T-24 cell apoptosis through a mitochondrial dysfunction pathway. Compared to 2,2′-dipicolylamine, the neutral BQL1 and BQL2 ligands with cryptolepine derivatives increased the planarity and branched chain resulting in BQL1-Pt and BQL2-Pt with favorable antitumor activities. Further, BQL2-Pt effectively inhibited the growth of bladder T-24 tumor in vivo. BQL2-Pt can act as a potential therapeutic candidate for cancer treatment.


2020 ◽  
Vol 27 (40) ◽  
pp. 6787-6814 ◽  
Author(s):  
Lin-Ying Xia ◽  
Ya-Liang Zhang ◽  
Rong Yang ◽  
Zhong-Chang Wang ◽  
Ya-Dong Lu ◽  
...  

Due to the three domains of the colchicine-site which is conducive to the combination with small molecule compounds, colchicine-site on the tubulin has become a common target for antitumor drug development, and accordingly, a large number of tubulin inhibitors binding to the colchicine-site have been reported and evaluated over the past years. In this study, tubulin inhibitors targeting the colchicine-site and their application as antitumor agents were reviewed based on the literature from 2015 to 2019. Tubulin inhibitors were classified into ten categories according to the structural features, including colchicine derivatives, CA-4 analogs, chalcone analogs, coumarin analogs, indole hybrids, quinoline and quinazoline analogs, lignan and podophyllotoxin derivatives, phenothiazine analogs, N-heterocycle hybrids and others. Most of them displayed potent antitumor activity, including antiproliferative effects against Multi-Drug-Resistant (MDR) cell lines and antivascular properties, both in vitro and in vivo. In this review, the design, synthesis and the analysis of the structure-activity relationship of tubulin inhibitors targeting the colchicine-site were described in detail. In addition, multi-target inhibitors, anti-MDR compounds, and inhibitors bearing antitumor activity in vivo are further listed in tables to present a clear picture of potent tubulin inhibitors, which could be beneficial for medicinal chemistry researchers.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Chun Li Zhang ◽  
Tai Hua Li ◽  
Shuang Huan Niu ◽  
Rong Fu Wang ◽  
Zhan Li Fu ◽  
...  

Five new organogermanium sesquioxides have been synthesized and characterized by elemental analysis and IR spectra. All the compounds were tested for antitumor activities against KB, HCT, and Bel cells in vitro. Compound 5 (-thiocarbamido propyl germanium sesquioxide) showed excellent antitumor activity, and its inhibition yield to KB, HCT, and Bel cells was 92.9%, 84.9%, and 70.9%, respectively. A rapid method was described for the labeling compound 5 with , and the optimum labeling conditions were investigated. The labeling yield is above 90% in pH 7.0, , reaction time greater than 10 minutes, 1 mg of compound 5, and 0.0750.1 mg of . The biodistribution of labeled compound 5 in nude mice bearing human colonic xenografts was studied. The result showed that the tumor uptakes were 0.73, 0.97, 0.87, and 0.62 ID%/g at 1-hour, 3-hour, 6-hour, and 20-hour postinjection, respectively. T/NT (the uptake ratio for per gram of tumor over normal tissues) was 18.3 for tumor versus brain and 5.81 for tumor versus muscle at 20-hour postinjection. The tumor clearance was slow. The results showed that compound 5 may be developed to be a suitable cancer therapeutic agent.


Sign in / Sign up

Export Citation Format

Share Document