scholarly journals Identification of NSP3 (SH2D3C) as a Prognostic Biomarker of Tumor Progression and Immune Evasion for Lung Cancer and Evaluation of Organosulfur Compounds from Allium sativum L. as Therapeutic Candidates

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1582
Author(s):  
Yuan-Chieh Yeh ◽  
Bashir Lawal ◽  
Michael Hsiao ◽  
Tse-Hung Huang ◽  
Chi-Ying F. Huang

The multi-domain non-structural protein 3 (NSP3) is an oncogenic molecule that has been concomitantly implicated in the progression of coronavirus infection. However, its oncological role in lung cancer and whether it plays a role in modulating the tumor immune microenvironment is not properly understood. In the present in silico study, we demonstrated that NSP3 (SH2D3C) is associated with advanced stage and poor prognoses of lung cancer cohorts. Genetic alterations of NSP3 (SH2D3C) co-occurred inversely with Epidermal Growth Factor Receptor (EGFR) alterations and elicited its pathological role via modulation of various components of the immune and inflammatory pathways in lung cancer. Our correlation analysis suggested that NSP3 (SH2D3C) promotes tumor immune evasion via dysfunctional T-cell phenotypes and T-cell exclusion mechanisms in lung cancer patients. NSP3 (SH2D3C) demonstrated a high predictive value and association with therapy resistance in lung cancer, hence serving as an attractive target for therapy exploration. We evaluated the in silico drug-likeness and NSP3 (SH2D3C) target efficacy of six organosulfur small molecules from Allium sativum using a molecular docking study. We found that the six organosulfur compounds demonstrated selective cytotoxic potential against cancer cell lines and good predictions for ADMET properties, drug-likeness, and safety profile. E-ajoene, alliin, diallyl sulfide, 2-vinyl-4H-1,3-dithiin, allicin, and S-allyl-cysteine docked well into the NSP3 (SH2D3C)-binding cavity with binding affinities ranging from –4.3~–6.70 Ă and random forest (RF) scores ranging from 4.31~5.26 pKd. However, S-allyl-cysteine interaction with NSP3 (SH2D3C) is unfavorable and hence less susceptible to NSP3 ligandability. In conclusion, our study revealed that NSP3 is an important onco-immunological biomarker encompassing the tumor microenvironment, disease staging and prognosis in lung cancer and could serve as an attractive target for cancer therapy. The organosulfur compounds from A. sativum have molecular properties to efficiently interact with the binding site of NSP3 and are currently under vigorous preclinical study in our laboratory.

2021 ◽  
Vol 23 (1) ◽  
pp. 64
Author(s):  
Yung-Hung Luo ◽  
Yi-Ping Yang ◽  
Chian-Shiu Chien ◽  
Aliaksandr A. Yarmishyn ◽  
Afeez Adekunle Ishola ◽  
...  

Lung cancer is the leading cause of death from cancer in Taiwan and throughout the world. Immunotherapy has revealed promising and significant efficacy in NSCLC, through immune checkpoint inhibition by blocking programmed cell death protein (PD)-1/PD-1 ligand (PD-L1) signaling pathway to restore patients’ T-cell immunity. One novel type of long, non-coding RNAs, circular RNAs (circRNAs), are endogenous, stable, and widely expressed in tissues, saliva, blood, urine, and exosomes. Our previous results revealed that the plasma level of hsa_circ_0000190 can be monitored by liquid-biopsy-based droplet digital PCR and may serve as a valuable blood-based biomarker to monitor the disease progression and the efficacy of immunotherapy. In this study, hsa_circ_0000190 was shown to increase the PD-L1 mRNA-mediated soluble PD-L1 (sPD-L1) expression, consequently interfering with the efficacy of anti-PD-L1 antibody and T-cell activation, which may result in immunotherapy resistance and poor outcome. Our results unraveled that hsa_circ_0000190 facilitated the tumorigenesis and immune evasion of NSCLC by upregulating sPD-L1 expression, potentially developing a different aspect in elucidating the molecular immunopathogenesis of NSCLC. Hsa_circ_0000190 upregulation can be an effective indicator for the progression of NSCLC, and hsa_circ_0000190 downregulation may possess a potential therapeutic value for the treatment of NSCLC in combination with immunotherapy.


2021 ◽  
Author(s):  
Thomas Fischer ◽  
Oliver Hartmann ◽  
Michaela Reissland ◽  
Cristian Prieto-Garcia ◽  
Kevin Klann ◽  
...  

Abstract BackgroundDespite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy.ResultsWe demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA‑PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model.ConclusionPTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8654
Author(s):  
Kai Yuan ◽  
Yanyan Feng ◽  
Hesong Wang ◽  
Lu Zhao ◽  
Wei Wang ◽  
...  

Lung cancer is the most common malignant tumor, accounting for 25% of cancer-related deaths and 14% of new cancers worldwide. Lung adenocarcinoma is the most common type of pulmonary cancer. Although there have been some improvements in the traditional therapy of lung cancer, the outcome and prognosis of patients remain poor. Lung cancer is the leading cause of cancer-related deaths worldwide, with 1.8 million new cases being diagnosed each year. Precision medicine based on genetic alterations is considered a new strategy of lung cancer treatment that requires highly specific biomarkers for precision diagnosis and treatment. Fibrinogen-like protein 2 (FGL2) plays important roles in both innate and adaptive immunity. However, the diagnostic value of FGL2 in lung cancer is largely unknown. In this study, we systematically investigated the expression profile and potential functions of FGL2 in lung adenocarcinoma. We used the TCGA and Oncomine datasets to compare the FGL2 expression levels between lung adenocarcinoma and adjacent normal tissues. We utilized the GEPIA, PrognoScan and Kaplan-Meier plotter databases to analyze the relationship between FGL2 expression and the survival of lung adenocarcinoma patients. Then, we investigated the potential roles of FGL2 in lung adenocarcinoma with the TIMER database and functional enrichment analyses. We found that FGL2 expression was significantly lower in lung adenocarcinoma tissue compared with adjacent normal tissue. A high expression level of FGL2 was correlated with better prognostic outcomes of lung adenocarcinoma patients, including overall survival and progression-free survival. FGL2 was positively correlated with the infiltration of immune cells, including dendritic cells, CD8+ T cells, macrophages, B cells, and CD4+ T cells, in lung adenocarcinoma. Functional enrichment analyses also showed that a high expression level of FGL2 was positively correlated with enhanced T cell activities, especially CD8+ T cell activation. Thus, we propose that high FGL2 expression, which is positively associated with enhanced antitumor activities mediated by T cells, is a beneficial marker for lung adenocarcinoma treatment outcomes.


Blood ◽  
2019 ◽  
Vol 133 (22) ◽  
pp. 2401-2412 ◽  
Author(s):  
Marién Pascual ◽  
María Mena-Varas ◽  
Eloy Francisco Robles ◽  
Maria-Jose Garcia-Barchino ◽  
Carlos Panizo ◽  
...  

Abstract Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.


2015 ◽  
Author(s):  
Manik Ghosh ◽  
Kamal Kant ◽  
Anoop Kumar ◽  
Padma Behera ◽  
Naresh Rangra ◽  
...  

Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


2020 ◽  
Author(s):  
Muhammad Saqib Sohail ◽  
Syed Faraz Ahmed ◽  
Ahmed Abdul Quadeer ◽  
Matthew McKay

Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


2020 ◽  
Vol 16 (1) ◽  
pp. 5-10
Author(s):  
Adrien Costantini ◽  
Theodoros Katsikas ◽  
Clementine Bostantzoglou

Over the past decade, major breakthroughs in the understanding of lung cancer histology and mutational pathways have radically changed diagnosis and management. More specifically, in non-small cell lung cancer (NSCLC), tumour characterisation has shifted from differentiating based solely on histology to characterisation that includes genetic profiling and mutational status of Epidermal Growth Factor (EGFR), Anaplastic Lymphoma Kinase (ALK), c-ros oncogene 1 (ROS1) and BRAF. These genetic alterations can be targeted by specific drugs that result in improved progression-free survival, as well as higher response rates and are currently standard of care for NSCLC patients harbouring these mutations. In this a narrative, non-systematic review we aim to handpick through the extensive literature and critically present the ground-breaking studies that lead to the institution of tailored treatment options as the standard of care for the main targetable genetic alterations.


Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


Sign in / Sign up

Export Citation Format

Share Document