scholarly journals The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1901
Author(s):  
Eva Miko ◽  
Aliz Barakonyi ◽  
Matyas Meggyes ◽  
Laszlo Szereday

NKT cells represent a small but significant immune cell population as being a part of and bridging innate and adaptive immunity. Their ability to exert strong immune responses via cytotoxicity and cytokine secretion makes them significant immune effectors. Since pregnancy requires unconventional maternal immunity with a tolerogenic phenotype, investigation of the possible role of NKT cells in materno-fetal immune tolerance mechanisms is of particular importance. This review aims to summarize and organize the findings of previous studies in this field. Data and information about NKT cells from mice and humans will be presented, focusing on NKT cells characteristics during normal pregnancy in the periphery and at the materno-fetal interface and their possible involvement in female reproductive failure and pregnancy complications with an immunological background.

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1641
Author(s):  
Emily E. S. Brettschneider ◽  
Masaki Terabe

Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.


2014 ◽  
Vol 63 (3) ◽  
pp. 199-213 ◽  
Author(s):  
Masaki Terabe ◽  
Jay A. Berzofsky
Keyword(s):  
Type I ◽  

2021 ◽  
Vol 22 (2) ◽  
pp. 727
Author(s):  
Xujun Song ◽  
Benno Traub ◽  
Jingwei Shi ◽  
Marko Kornmann

Interleukin (IL)-4 and -13 are structurally and functionally related cytokines sharing common receptor subunits. They regulate immune responses and, moreover, are involved in the pathogenesis of a variety of human neoplasms. Three different receptors have been described for IL-4, but only IL-4 receptor type II (IL-4Rα/IL-13Rα1) is expressed in solid tumors. While IL-13 can also bind to three different receptors, IL-13 receptor type I (IL-4Rα/IL-13Rα1/IL-13Rα2) and type II (IL-4Rα/IL-13Rα1) are expressed in solid tumors. After receptor binding, IL-4 and IL-13 can mediate tumor cell proliferation, survival, and metastasis in gastric or colon cancer. This review summarizes the results about the role of IL-4/IL-13 and their receptors in gastric and colon cancer.


2021 ◽  
Vol 22 (6) ◽  
pp. 3090
Author(s):  
Toshimasa Shimizu ◽  
Hideki Nakamura ◽  
Atsushi Kawakami

Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by chronic inflammation of the salivary and lacrimal glands and extra-glandular lesions. Adaptive immune response including T- and B-cell activation contributes to the development of SS. However, its pathogenesis has not yet been elucidated. In addition, several patients with SS present with the type I interferon (IFN) signature, which is the upregulation of the IFN-stimulated genes induced by type I IFN. Thus, innate immune responses including type I IFN activity are associated with SS pathogenesis. Recent studies have revealed the presence of activation pattern recognition receptors (PRRs) including Toll-like receptors, RNA sensor retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, and inflammasomes in infiltrating and epithelial cells of the salivary glands among patients with SS. In addition, the activation of PRRs via the downstream pathway such as the type I IFN signature and nuclear factor kappa B can directly cause organ inflammation, and it is correlated with the activation of adaptive immune responses. Therefore, this study assessed the role of the innate immune signal pathway in the development of inflammation and immune abnormalities in SS.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1720
Author(s):  
Kuo-Chieh Liao ◽  
Mariano A. Garcia-Blanco

The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host–virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 451
Author(s):  
Galina Palyanova ◽  
Valery Murzin ◽  
Andrey Borovikov ◽  
Nikolay Karmanov ◽  
Sergei Kuznetsov

Composition of native gold and minerals in intergrowth with rhyolites of the Chudnoe Au-Pd-REE deposit (Subpolar Urals, Russia) was studied using optical microscopy, scanning electron microscopy, and electron microprobe analysis. Five varieties of native gold have been identified, based on the set of impurity elements and their quantities, and on intergrown minerals. Native gold in rhyolites from the Ludnaya ore zone is homogeneous and contains only Ag (fineness 720‰, type I). It is in intergrowth with fuchsite or allanite and mertieite-II. In rhyolites from the Slavnaya ore zone, native gold is heterogeneous, has a higher fineness, different sets and contents of elements: Ag, Cu, 840–860‰ (type II); Ag, Cu, Pd, 830–890‰ (III); Ag, Pd, Cu, Hg, 840–870‰ (IV). It occurs in intergrowth with fuchsite, albite, and mertieite-II (type II), or albite, quartz, and atheneite (III), or quartz, albite, K-feldspar, and mertieite-II (IV). High fineness gold (930–1000‰, type V) with low contents of Ag, Cu, and Pd or their absence occurs in the form as microveins, fringes and microinclusions in native gold II–IV. Tetra-auricupride (AuCu) is presented as isometric inclusions in gold II and platelets in the decay structures in gold III and IV. The preliminary data of a fluid inclusions study showed that gold mineralization at the Chudnoe deposit could have been formed by chloride fluids of low and medium salinity at temperatures from 105 to 230 °C and pressures from 5 to 115 MPa. The formation of native gold I is probably related to fuchsitization and allanitization of rhyolites. The formation of native gold II-V is also associated with the same processes, but it is more complicated and occurred later with a significant role of Na-, Si-, and K-metasomatism. The presence of Pd and Cu in the ores and Cr in fuchsite indicates the important role of mafic-ultramafic magmatism.


2010 ◽  
Vol 10 ◽  
pp. 2367-2384 ◽  
Author(s):  
Eduardo Pérez-Gómez ◽  
Gaelle del Castillo ◽  
Juan Francisco Santibáñez ◽  
Jose Miguel Lêpez-Novoa ◽  
Carmelo Bernabéu ◽  
...  

Endoglin (CD105) is an auxiliary membrane receptor of transforming growth factor beta (TGF-β) that interacts with type I and type II TGF-β receptors and modulates TGF-β signaling. Endoglin is overexpressed in the tumor-associated vascular endothelium, where it modulates angiogenesis. This feature makes endoglin a promising target for antiangiogenic cancer therapy. In addition, recent studies on human and experimental models of carcinogenesis point to an important tumor cell–autonomous role of endoglin by regulating proliferation, migration, invasion, and metastasis. These studies suggest that endoglin behaves as a suppressor of malignancy in experimental and human epithelial carcinogenesis, although it can also promote metastasis in other types of cancer. In this review, we evaluate the implication of endoglin in tumor development underlying studies developed in our laboratories in recent years.


1985 ◽  
Vol 248 (3) ◽  
pp. R302-R307 ◽  
Author(s):  
W. W. Winder ◽  
M. L. Terry ◽  
V. M. Mitchell

We have investigated the physiological role of the marked increase in plasma epinephrine that occurs in fasted exercising rats. Fasted adrenodemedullated (ADM) rats show a marked reduction in endurance run times compared with sham-operated (SO) controls. After running for 30 min at 21 m/min up a 10% grade, ADM rats' blood glucose was 2.9 +/- 0.1 mM vs. 4.3 +/- 0.2 mM in SO rats. At the same time, blood lactate was 3.0 +/- 0.2 mM in SO rats compared with 1.0 +/- 0.1 mM in ADM rats. Glycogenolysis was impaired in ADM rats in the fast-twitch white region of the quadriceps, lateral gastrocnemius, and soleus muscles but not in the fast-twitch red region of the quadriceps muscle. Hepatic adenosine 3',-5'-cyclic monophosphate was increased to the same extent in ADM and SO rats during exercise. Infusion of epinephrine into ADM rats during exercise corrected the hypoglycemia, restored lactate to normal, and stimulated glycogenolysis in soleus, white quadriceps, and lateral gastrocnemius muscles. Epinephrine-dependent glycogenolysis in contracting type I and noncontracting type II muscle fibers apparently provides essential quantities of lactate for hepatic gluconeogenesis in fasted exercising rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yin-Fu Sun ◽  
Jiang Pi ◽  
Jun-Fa Xu

Exosomes are cell-derived nanovesicles carrying protein, lipid, and nucleic acid for secreting cells, and act as significant signal transport vectors for cell-cell communication and immune modulation. Immune-cell-derived exosomes have been found to contain molecules involved in immunological pathways, such as MHCII, cytokines, and pathogenic antigens. Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most fatal infectious diseases. The pathogen for tuberculosis escapes the immune defense and continues to replicate despite rigorous and complicate host cell mechanisms. The infected-cell-derived exosomes under this circumstance are found to trigger different immune responses, such as inflammation, antigen presentation, and activate subsequent pathways, highlighting the critical role of exosomes in anti-MTB immune response. Additionally, as a novel kind of delivery system, exosomes show potential in developing new vaccination and treatment of tuberculosis. We here summarize recent research progress regarding exosomes in the immune environment during MTB infection, and further discuss the potential of exosomes as delivery system for novel anti-MTB vaccines and therapies.


Sign in / Sign up

Export Citation Format

Share Document