scholarly journals Structure and Frictional Properties of the Leg Joint of the Beetle Pachnoda marginata (Scarabaeidae, Cetoniinae) as an Inspiration for Technical Joints

Biomimetics ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 14
Author(s):  
Steffen Vagts ◽  
Josef Schlattmann ◽  
Alexander Kovalev ◽  
Stanislav N. Gorb

The efficient locomotion of insects is not only inspiring for control algorithms but also promises innovations for the reduction of friction in joints. After previous analysis of the leg kinematics and the topological characterization of the contacting joint surfaces in the beetle Pachnoda marginata, in the present paper, we report on the measurement of the coefficient of friction within the leg joints exhibiting an anisotropic frictional behavior in different sliding directions. In addition, the simulation of the mechanical behavior of a single microstructural element helped us to understand the interactions between the contact parts of this tribological system. These findings were partly transferred to a technical contact pair which is typical for such an application as joint connectors in the automotive field. This innovation helped to reduce the coefficient of friction under dry sliding conditions up to 17%.

1981 ◽  
Vol 103 (2) ◽  
pp. 236-242 ◽  
Author(s):  
S. Kato ◽  
K. Yamaguchi ◽  
E. Marui ◽  
K. Tachi

Frictional properties in the contact between a hard protuberance and a metal surface covered by a soft thin metal film are examined experimentally. The protuberance used in the experiment is a hard steel ball which simulates asperities on many engineering surfaces. The load dependency of the coefficient of friction and the effects of thickness and hardness of the film on the friction are clarified. The simple empirical expression of friction, which represents the effect of the film properties, is presented, considering the deformation mechanism of the surface film.


2020 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Mariana Santos ◽  
Ana Sofia Coelho ◽  
Anabela Baptista Paula ◽  
Carlos Miguel Marto ◽  
Inês Amaro ◽  
...  

Background: Indirect restorations using composites with ceramic fillings can be an alternative to ceramic veneering and direct composite restorations for the treatment of posterior teeth. The aim of this study was the evaluation of the mechanical and tribological properties of a ceromer. Materials and Methods: Sixty specimens were produced and divided into two groups: one control group not submitted to thermocycling (n = 20) and one test group submitted to 5000 cycles of thermocycling (n = 40). The studied parameters were microhardness, surface roughness and the coefficient of friction (scratch test). Results: The ceromer exhibits a reduction of polymerization shrinkage, higher wear, and fracture resistance than the composite resins. The studied ceromer presented good mechanical properties, even after being submitted to thermocycling. Roughness was the property most affected, increasing 25.8%, microhardness decreased by 10.5% and the coefficient of friction increased by 4.2%. Conclusions: In certain situations, ceromers can be an alternative to composite resins and ceramics, providing an aesthetic, conservative and longevity option.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Łukasz Frącczak ◽  
Małgorzata Matusiak

AbstractFriction is defined as a force resisting a relative motion between two bodies in contact. The friction of a fabric on itself or on another fabric influences significantly a fabric’s performance and user’s utility comfort, especially the so-called sensorial comfort. Generally, the coefficient of friction is determined for a given pair of materials. The aim of the present work was to investigate the influence of the structure of the seersucker woven fabrics on their frictional properties. Three variants of the seersucker woven fabrics of different repeat of the seersucker effect were the objects of the investigations. Three measuring elements were applied: made of aluminum and steel and covered with silicone. The obtained results confirmed the influence of the pattern of the seersucker effect on the values of friction coefficient. It was also stated that there are differences between the friction coefficients measured in the warp and weft directions of the seersucker woven fabrics. Values of friction coefficient between the seersucker woven fabrics and measuring elements were the highest for the measuring element covered by silicone. These values were several times higher than the values of friction coefficient measured using the measuring elements made of aluminum and steel.


1982 ◽  
Vol 104 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Shinobu Kato ◽  
Katsumi Yamaguchi ◽  
Etsuo Marui ◽  
Kiyoo Tachi

Analytical investigation of the evaluation of the coefficient of friction is made to clarify the mechanism of the load dependency of friction, which was obtained in Part 1 of this research, and also to ascertain the effects of the surface film on the friction characteristic. The plastic flow of the soft metal film between a protuberance and the subsurface is presumed, and the pressure distribution originating from the side flow is calculated on the basis of the plasticity theory. The effects of the coefficient of friction of the load, the thickness and hardness of the film, and the radius of the protuberance, are examined. As a result, it is clarified that the load dependency of friction arises from the extremely high pressure distribution generated in the film.


Author(s):  
Bodhi R. Manu ◽  
Adam M. Schroeder ◽  
Ahalapitiya H. Jayatissa

Tribology investigations were conducted to understand the effect of humidity and water adsorption at the interfacial surface on the friction coefficient of titanium. Pin-on-disk tribometer tests were conducted at different levels of humidity ranging from 0% to 71% RH using aluminum and steel pins on a titanium plate. The variation of the mean coefficient of friction was plotted as a function of relative humidity. The friction coefficient slightly decreased when the relative humidity was increased from 0% to 10% RH. However, it increased with a further increase in humidity. The maximum friction coefficients were observed at 55% and 65% RH for steel and aluminum, respectively. The thickness of the wear tracks also showed the same trend as the friction coefficient. Under high humidity conditions, water vapor can condense on the surface of the moving machine parts. To understand the influence of this water film, a pin-on-disk test was carried out on a sample where a thin film of water masks metal surfaces from contact. Although the coefficient of friction was similar for both the aluminum and steel pins’ interaction with titanium (~0.36), the wear tracks were not formed for steel pin/titanium interaction even though this experiment was conducted for more cycles.


2022 ◽  
Vol 2159 (1) ◽  
pp. 012014
Author(s):  
P A Garzón-Agudelo ◽  
W Palacios-Alvarado ◽  
B Medina-Delgado

Abstract The 316 L steel is a type of stainless steel widely used in the medical industry, which in recent years has been studied for different uses in society. Being an engineering material, it is imperative to know its performance based on its physical and mechanical properties that allow identifying the response of this steel in addition to thin films as coatings. Bismuth and titanium have been recently used to improve the properties of 316 L steel, so they were used in this study. The sol-gel technique was used as the film forming method. The response of physical and mechanical properties was evaluated from the analysis of microhardness and coefficient of friction reported for the different types of steel-coating systems. Higher microhardness values were found for films with higher proportion of titanium. The coefficient of friction values is influenced by the system used, with higher values obtained for samples with a single coating layer.


Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


Sign in / Sign up

Export Citation Format

Share Document