scholarly journals Quantitative Identification of Functional Connectivity Disturbances in Neuropsychiatric Lupus Based on Resting-State fMRI: A Robust Machine Learning Approach

2020 ◽  
Vol 10 (11) ◽  
pp. 777
Author(s):  
Nicholas John Simos ◽  
Stavros I. Dimitriadis ◽  
Eleftherios Kavroulakis ◽  
Georgios C. Manikis ◽  
George Bertsias ◽  
...  

Neuropsychiatric systemic lupus erythematosus (NPSLE) is an autoimmune entity comprised of heterogenous syndromes affecting both the peripheral and central nervous system. Research on the pathophysiological substrate of NPSLE manifestations, including functional neuroimaging studies, is extremely limited. The present study examined person-specific patterns of whole-brain functional connectivity in NPSLE patients (n = 44) and age-matched healthy control participants (n = 39). Static functional connectivity graphs were calculated comprised of connection strengths between 90 brain regions. These connections were subsequently filtered through rigorous surrogate analysis, a technique borrowed from physics, novel to neuroimaging. Next, global as well as nodal network metrics were estimated for each individual functional brain network and were input to a robust machine learning algorithm consisting of a random forest feature selection and nested cross-validation strategy. The proposed pipeline is data-driven in its entirety, and several tests were performed in order to ensure model robustness. The best-fitting model utilizing nodal graph metrics for 11 brain regions was associated with 73.5% accuracy (74.5% sensitivity and 73% specificity) in discriminating NPSLE from healthy individuals with adequate statistical power. Closer inspection of graph metric values suggested an increased role within the functional brain network in NSPLE (indicated by higher nodal degree, local efficiency, betweenness centrality, or eigenvalue efficiency) as compared to healthy controls for seven brain regions and a reduced role for four areas. These findings corroborate earlier work regarding hemodynamic disturbances in these brain regions in NPSLE. The validity of the results is further supported by significant associations of certain selected graph metrics with accumulated organ damage incurred by lupus, with visuomotor performance and mental flexibility scores obtained independently from NPSLE patients.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Satoru Hiwa ◽  
Shogo Obuchi ◽  
Tomoyuki Hiroyasu

Working memory (WM) load-dependent changes of functional connectivity networks have previously been investigated by graph theoretical analysis. However, the extraordinary number of nodes represented within the complex network of the human brain has hindered the identification of functional regions and their network properties. In this paper, we propose a novel method for automatically extracting characteristic brain regions and their graph theoretical properties that reflect load-dependent changes in functional connectivity using a support vector machine classification and genetic algorithm optimization. The proposed method classified brain states during 2- and 3-back test conditions based upon each of the three regional graph theoretical metrics (degree, clustering coefficient, and betweenness centrality) and automatically identified those brain regions that were used for classification. The experimental results demonstrated that our method achieved a >90% of classification accuracy using each of the three graph metrics, whereas the accuracy of the conventional manual approach of assigning brain regions was only 80.4%. It has been revealed that the proposed framework can extract meaningful features of a functional brain network that is associated with WM load from a large number of nodal graph theoretical metrics without prior knowledge of the neural basis of WM.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xin Wang ◽  
Yanshuang Ren ◽  
Wensheng Zhang

Study of functional brain network (FBN) based on functional magnetic resonance imaging (fMRI) has proved successful in depression disorder classification. One popular approach to construct FBN is Pearson correlation. However, it only captures pairwise relationship between brain regions, while it ignores the influence of other brain regions. Another common issue existing in many depression disorder classification methods is applying only single local feature extracted from constructed FBN. To address these issues, we develop a new method to classify fMRI data of patients with depression and healthy controls. First, we construct the FBN using a sparse low-rank model, which considers the relationship between two brain regions given all the other brain regions. Moreover, it can automatically remove weak relationship and retain the modular structure of FBN. Secondly, FBN are effectively measured by eight graph-based features from different aspects. Tested on fMRI data of 31 patients with depression and 29 healthy controls, our method achieves 95% accuracy, 96.77% sensitivity, and 93.10% specificity, which outperforms the Pearson correlation FBN and sparse FBN. In addition, the combination of graph-based features in our method further improves classification performance. Moreover, we explore the discriminative brain regions that contribute to depression disorder classification, which can help understand the pathogenesis of depression disorder.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ruedeerat Keerativittayayut ◽  
Ryuta Aoki ◽  
Mitra Taghizadeh Sarabi ◽  
Koji Jimura ◽  
Kiyoshi Nakahara

Although activation/deactivation of specific brain regions has been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here, we investigated time-varying functional connectivity patterns across the human brain in periods of 30–40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding.


2021 ◽  
Author(s):  
Alireza Fathian ◽  
Yousef Jamali ◽  
Mohammad Reza Raoufy

Abstract Alzheimer’s disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain’s functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study analyzed the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer’s disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression, and these trends behaved differently at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, The methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhibao Li ◽  
Chong Liu ◽  
Qiao Wang ◽  
Kun Liang ◽  
Chunlei Han ◽  
...  

Objective: The objective of this study was to use functional connectivity and graphic indicators to investigate the abnormal brain network topological characteristics caused by Parkinson's disease (PD) and the effect of acute deep brain stimulation (DBS) on those characteristics in patients with PD.Methods: We recorded high-density EEG (256 channels) data from 21 healthy controls (HC) and 20 patients with PD who were in the DBS-OFF state and DBS-ON state during the resting state with eyes closed. A high-density EEG source connectivity method was used to identify functional brain networks. Power spectral density (PSD) analysis was compared between the groups. Functional connectivity was calculated for 68 brain regions in the theta (4–8 Hz), alpha (8–13 Hz), beta1 (13–20 Hz), and beta2 (20–30 Hz) frequency bands. Network estimates were measured at both the global (network topology) and local (inter-regional connection) levels.Results: Compared with HC, PSD was significantly increased in the theta (p = 0.003) frequency band and was decreased in the beta1 (p = 0.009) and beta2 (p = 0.04) frequency bands in patients with PD. However, there were no differences in any frequency bands between patients with PD with DBS-OFF and DBS-ON. The clustering coefficient and local efficiency of patients with PD showed a significant decrease in the alpha, beta1, and beta2 frequency bands (p < 0.001). In addition, edgewise statistics showed a significant difference between the HC and patients with PD in all analyzed frequency bands (p < 0.005). However, there were no significant differences between the DBS-OFF state and DBS-ON state in the brain network, except for the functional connectivity in the beta2 frequency band (p < 0.05).Conclusion: Compared with HC, patients with PD showed the following characteristics: slowed EEG background activity, decreased clustering coefficient and local efficiency of the brain network, as well as both increased and decreased functional connectivity between different brain areas. Acute DBS induces a local response of the brain network in patients with PD, mainly showing decreased functional connectivity in a few brain regions in the beta2 frequency band.


2015 ◽  
Vol 7 (10) ◽  
pp. 4111-4122 ◽  
Author(s):  
Xin Xu ◽  
Qifan Kuang ◽  
Yongqing Zhang ◽  
Huijun Wang ◽  
Zhining Wen ◽  
...  

The functional brain network in late adulthood has been found to show a significant difference from that in young adulthood using a variety of network metrics.


2021 ◽  
Author(s):  
Simone JT van Montfort ◽  
Fienke L Ditzel ◽  
Ilse MJ Kant ◽  
Ellen Aarts ◽  
Lisette M Vernooij ◽  
...  

AbstractBackgroundDelirium is a frequent complication of elective surgery in elderly patients, associated with an increased risk of long-term cognitive impairment and dementia. Disturbances in the functional brain network were previously reported during delirium. We hypothesized persisting alterations in functional brain networks three months after elective surgery in patients with postoperative delirium, and hypothesized that postoperative brain connectivity changes (irrespective of delirium) are related to cognitive decline.MethodsElderly patients (N=554) undergoing elective surgery underwent clinical assessments (including Trail Making Test B (TMT-B) and resting-state functional magnetic resonance imaging (rs-fMRI) before and three months after surgery. Delirium was assessed on the first seven postoperative days. After strict motion correction, rs-fMRI connectivity strength and network characteristics were calculated in 246 patients (130 patients underwent scans at both timepoints), of whom 38 (16%) developed postoperative delirium.ResultsRs-fMRI functional connectivity strength increased after surgery in the total study population (β=0.006, 95%CI=0.000–0.012, p=0.021), but decreased after postoperative delirium (β=-0.014, 95%CI=0.000–0.012, p=0.026). No difference in TMT-B scores was found at follow-up between patients with and without postoperative delirium. Patients who decreased in functional connectivity strength declined in TMT-B scores compared to the group that did not (β=11.04, 95%CI=0.85-21.2, p=0.034).ConclusionsDelirium was associated with decreased functional connectivity strength three months after the syndrome was clinically resolved, which implies that delirium has lasting impact on brain networks. Decreased connectivity strength was associated with statistically significant (but not necessarily clinically relevant) cognitive deterioration after major surgery, which was not specifically related to delirium.Summary statementDelirium was associated with decreased resting-state fMRI functional connectivity strength three months after the syndrome was clinically resolved. Irrespective of delirium, decreased connectivity strength after major surgery was associated with a statistically significant cognitive deterioration.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1001
Author(s):  
Minjian Zhang ◽  
Bo Li ◽  
Yafei Liu ◽  
Rongyu Tang ◽  
Yiran Lang ◽  
...  

Epilepsy is common brain dysfunction, where abnormal synchronized activities can be observed across multiple brain regions. Low-frequency focused pulsed ultrasound has been proven to modulate the epileptic brain network. In this study, we used two modes of low-intensity focused ultrasound (pulsed-wave and continuous-wave) to sonicate the brains of KA-induced epileptic rats, analyzed the EEG functional brain connections to explore their respective effect on the epileptic brain network, and discuss the mechanism of ultrasound neuromodulation. By comparing the brain network characteristics before and after sonication, we found that two modes of ultrasound both significantly affected the functional brain network, especially in the low-frequency band below 12 Hz. After two modes of sonication, the power spectral density of the EEG signals and the connection strength of the brain network were significantly reduced, but there was no significant difference between the two modes. Our results indicated that the ultrasound neuromodulation could effectively regulate the epileptic brain connections. The ultrasound-mediated attenuation of epilepsy was independent of modes of ultrasound.


Author(s):  
Geng Zhang ◽  
Qi Zhu ◽  
Jing Yang ◽  
Ruting Xu ◽  
Zhiqiang Zhang ◽  
...  

Automatic diagnosis of brain diseases based on brain connectivity network (BCN) classification is one of the hot research fields in medical image analysis. The functional brain network reflects the brain functional activities and structural brain network reflects the neural connections of the main brain regions. It is of great significance to explore and explain the inner mechanism of the brain and to understand and treat brain diseases. In this paper, based on the graph structure characteristics of brain network, the fusion model of functional brain network and structural brain network is designed to classify the diagnosis of brain mental diseases. Specifically, the main work of this paper is to use the Laplacian graph embed the information of diffusion tensor imaging, which contains the characteristics of structural brain networks, into the functional brain network with hyper-order functional connectivity information built based on functional magnetic resonance data using the sparse representation method, to obtain brain network with both functional and structural characteristics. Projection of the brain network and the two original modes data to the kernel space respectively and then classified by the multi-task learning method. Experiments on the epilepsy dataset show that our method has better performance than several state-of-the-art methods. In addition, brain regions and connections that are highly correlated with disease revealed by our method are discussed.


Neurology ◽  
2017 ◽  
Vol 89 (17) ◽  
pp. 1764-1772 ◽  
Author(s):  
Massimo Filippi ◽  
Silvia Basaia ◽  
Elisa Canu ◽  
Francesca Imperiale ◽  
Alessandro Meani ◽  
...  

Objective:To investigate functional brain network architecture in early-onset Alzheimer disease (EOAD) and behavioral variant frontotemporal dementia (bvFTD).Methods:Thirty-eight patients with bvFTD, 37 patients with EOAD, and 32 age-matched healthy controls underwent 3D T1-weighted and resting-state fMRI. Graph analysis and connectomics assessed global and local functional topologic network properties, regional functional connectivity, and intrahemispheric and interhemispheric between-lobe connectivity.Results:Despite similarly extensive cognitive impairment relative to controls, patients with EOAD showed severe global functional network alterations (lower mean nodal strength, local efficiency, clustering coefficient, and longer path length), while patients with bvFTD showed relatively preserved global functional brain architecture. Patients with bvFTD demonstrated reduced nodal strength in the frontoinsular lobe and a relatively focal altered functional connectivity of frontoinsular and temporal regions. Functional connectivity breakdown in the posterior brain nodes, particularly in the parietal lobe, differentiated patients with EOAD from those with bvFTD. While EOAD was associated with widespread loss of both intrahemispheric and interhemispheric functional correlations, bvFTD showed a preferential disruption of the intrahemispheric connectivity.Conclusions:Disease-specific patterns of functional network topology and connectivity alterations were observed in patients with EOAD and bvFTD. Graph analysis and connectomics may aid clinical diagnosis and help elucidate pathophysiologic differences between neurodegenerative dementias.


Sign in / Sign up

Export Citation Format

Share Document