scholarly journals A New Modular Structural System for Tall Buildings Based on Tetrahedral Configuration

Buildings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 240
Author(s):  
Giulia Angelucci ◽  
Fabrizio Mollaioli ◽  
Roberto Tardocchi

Inspired by the high mechanical performance of diagrid structures, the minimization of material consumption on braced tubes and the expressive potency of tensegrity modular structures, this work proposes an innovative three-dimensional system for tall buildings. A new modular structural system generated from the assembly of tetrahedral units is investigated. The paper integrates insights on the architectural implications and mechanical performance of the reticular system arranged in repetitive triangular-based modules. The impact of different geometric configurations of the structural members on the economic design is also discussed and recommendations for the optimal topology are made. Guidelines for the design and analytical formula for accessing preliminary member sizes are proposed on the basis of stiffness requirements.

Buildings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 19 ◽  
Author(s):  
Osama Mohamed ◽  
Rania Khattab

This paper evaluates the practice of using moment connections in the perimeter of the structural system and shear connections within the interior connections of the three-dimensional structural system from the perspective of resistance to progressive collapse. The enhanced resistance to progressive collapse associated with using moment resisting connections at the perimeter as well as internal to the three-dimensional system is assessed. Progressive collapse occurrence and system resistance are determined using the alternate path method which presumes a primary load carrying-member is notionally removed. The paper compares the structural response determined using linear elastic, non-linear elastic and non-linear dynamic analyses. Linear and non-linear static analyses are found to be incapable of capturing the response pursuant to the loss of the primary load carrying member. The analysis procedures used in this study followed (for the most part) the United States Department of Defense Guide for Progressive Collapse Resistant Design of Structures.


2020 ◽  
Author(s):  
Rinke J. van Tatenhove-Pel ◽  
Tomaž Rijavec ◽  
Aleš Lapanje ◽  
Iris van Swam ◽  
Emile Zwering ◽  
...  

AbstractMetabolic interactions between cells affect microbial community compositions and hence their function in ecosystems. It is well-known that under competition for the exchanged metabolite, concentration gradients constrain the distances over which interactions can occur. However, interaction distances are typically quantified in two-dimensional systems or without accounting for competition or other metabolite-removal, conditions which may not very often match natural ecosystems. We here analyze the impact of cell-to-cell distance on unidirectional cross-feeding in a three-dimensional system with competition for the exchanged metabolite. Effective interaction distances were computed with a reaction-diffusion model and experimentally verified by growing a synthetic consortium of 1 µm-sized metabolite producer, receiver and competitor cells in different spatial structures. We show that receivers cannot interact with producers ∼15 µm away from them, as product concentration gradients flatten close to producer cells. We developed an aggregation protocol and created variants of the receiver cells’ import system, to show that within producer-receiver aggregates even low affinity receiver cells could interact with producers. These results show that competition or other metabolite-removal of a public good in a three-dimensional system reduces the interaction distance to the low micrometer-range, highlighting the importance of concentration gradients as physical constraint for cellular interactions.


2012 ◽  
Vol 204-208 ◽  
pp. 1118-1124
Author(s):  
Ming Cheng Liao ◽  
Zhen Ya Xiao ◽  
Yao Qing Gong

A new analytical method for the analysis of interactions between the superstructure and foundation and foundation soil of a tall building is formulated. The computational model of a structural system and its foundation are simplified equivalently and continuously into a three-dimensional model, a combination of thin-walled tubes on a semi-infinite elastic subgrade. The various stiffness coefficients for evaluating elastic strain energy stored in foundation soil are as well derived by using the principle of energy equivalency. Some satisfying conclusions are obtained by the interaction analysis for the tube-in-tube structural system adopted by Guangdong Guomao Building.


2020 ◽  
Author(s):  
Rinke J. van Tatenhove-Pel ◽  
Tomaž Rijavec ◽  
Aleš Lapanje ◽  
Iris van Swam ◽  
Emile Zwering ◽  
...  

Abstract Metabolic interactions between cells affect microbial community compositions and hence their function in ecosystems. It is well-known that under competition for the exchanged metabolite, concentration gradients constrain the distances over which interactions can occur. However, interaction distances are typically quantified in two-dimensional systems or without accounting for competition or other metabolite-removal, conditions which may not very often match natural ecosystems. We here analyze the impact of cell-to-cell distance on unidirectional cross-feeding in a three-dimensional aqueous system with competition for the exchanged metabolite. Effective interaction distances were computed with a reaction-diffusion model and experimentally verified by growing a synthetic consortium of 1 µm-sized metabolite producer, receiver, and competitor cells in different spatial structures. We show that receivers cannot interact with producers located on average 15 µm away from them, as product concentration gradients flatten close to producer cells. We developed an aggregation protocol and varied the receiver cells’ product affinity, to show that within producer–receiver aggregates even low-affinity receiver cells could interact with producers. These results show that competition or other metabolite-removal of a public good in a three-dimensional system reduces metabolic interaction distances to the low µm-range, highlighting the importance of concentration gradients as physical constraint for cellular interactions.


2021 ◽  
Vol 16 (5) ◽  
pp. 70-83
Author(s):  
A. V. Yefimov

Currently, the legal regulation of public relations varies significantly depending on their participants. In particular, legal regulation is influenced by the consumer. However, there is no unambiguous definition of the concept of a “consumer” in legal acts, which gives rise to theoretical discussions and problems in enforcement. The purpose of the paper is to draw theoretical conclusions concerning the impact of a differentiated approach to legal regulation of the content of the legal status of consumers. Objectives of the study include: determination of validity of differentiating legal regulation of public relations, including legally binding relations; development of an approach to the identification of the general legal concept of the consumer; formation of a uniform model of the consumer’s legal status. In writing the paper, the author applied general scientific methods (system and functional methods, a group of logical methods such as deduction, induction, analysis, synthesis) and special legal methods (the formal legal method, the legal modeling method). The study concludes that the legal status of persons may vary according to such criteria as professionalism, association with business activity, connection with consumption. These criteria form a three-dimensional system, within which the legal status of a particular person is determined. In this sense, the qualification of a person as a consumer is possible due to the differentiation of legal regulation of relations according to one of the criteria (connection with consumption). It is substantiated that consumers are not only individuals who do not carry out business activities, but also individual entrepreneurs, legal entities, public legal entities, regardless of their professionalism and connection with business activities. The article proposes an approach according to which the process of consumption should equally influence the legal status of consuming persons due to a single criterion of differentiation with the preservation of the possibility of further differentiation by other criteria of legal significance. On the basis of the selection of the consumption criterion, the paper proposes a uniform model of the legal status of the consumer.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cui Wang ◽  
Ling Cai ◽  
Yaojian Wu ◽  
Yurong Ouyang

AbstractIntegrated renovation projects are important for marine ecological environment protection. Three-dimensional hydrodynamics and water quality models are developed for the Maowei Sea to assess the hydrodynamic environment base on the MIKE3 software with high resolution meshes. The results showed that the flow velocity changed minimally after the project, decreasing by approximately 0.12 m/s in the east of the Maowei Sea area and increasing by approximately 0.01 m/s in the northeast of the Shajing Port. The decrease in tidal prism (~ 2.66 × 106 m3) was attributed to land reclamation, and accounted for just 0.86% of the pre-project level. The water exchange half-life increased by approximately 1 day, implying a slightly reduced water exchange capacity. Siltation occurred mainly in the reclamation and dredging areas, amounting to back-silting of approximately 2 cm/year. Reclamation project is the main factor causing the decrease of tidal volume and weakening the hydrodynamics in Maowei Sea. Adaptive management is necessary for such a comprehensive regulation project. According to the result, we suggest that reclamation works should strictly prohibit and dredging schemes should optimize in the subsequent regulation works.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


2021 ◽  
pp. 109963622110338
Author(s):  
Yury Solyaev ◽  
Arseniy Babaytsev ◽  
Anastasia Ustenko ◽  
Andrey Ripetskiy ◽  
Alexander Volkov

Mechanical performance of 3d-printed polyamide sandwich beams with different type of the lattice cores is investigated. Four variants of the beams are considered, which differ in the type of connections between the elements in the lattice structure of the core. We consider the pantographic-type lattices formed by the two families of inclined beams placed with small offset and connected by stiff joints (variant 1), by hinges (variant 2) and made without joints (variant 3). The fourth type of the core has the standard plane geometry formed by the intersected beams lying in the same plane (variant 4). Experimental tests were performed for the localized indentation loading according to the three-point bending scheme with small span-to-thickness ratio. From the experiments we found that the plane geometry of variant 4 has the highest rigidity and the highest load bearing capacity in the static tests. However, other three variants of the pantographic-type cores (1–3) demonstrate the better performance under the impact loading. The impact strength of such structures are in 3.5–5 times higher than those one of variant 4 with almost the same mass per unit length. This result is validated by using numerical simulations and explained by the decrease of the stress concentration and the stress state triaxiality and also by the delocalization effects that arise in the pantographic-type cores.


Sign in / Sign up

Export Citation Format

Share Document