scholarly journals Characterization of Carbon Materials for Hydrogen Storage and Compression

2020 ◽  
Vol 6 (3) ◽  
pp. 46
Author(s):  
Giuseppe Sdanghi ◽  
Rafael L. S. Canevesi ◽  
Alain Celzard ◽  
Matthias Thommes ◽  
Vanessa Fierro

Carbon materials have proven to be a suitable choice for hydrogen storage and, recently, for hydrogen compression. Their developed textural properties, such as large surface area and high microporosity, are essential features for hydrogen adsorption. In this work, we first review recent advances in the physisorption characterization of nanoporous carbon materials. Among them, approaches based on the density functional theory are considered now standard methods for obtaining a reliable assessment of the pore size distribution (PSD) over the whole range from narrow micropores to mesopores. Both a high surface area and ultramicropores (pore width < 0.7 nm) are needed to achieve significant hydrogen adsorption at pressures below 1 MPa and 77 K. However, due to the wide PSD typical of activated carbons, it follows from an extensive literature review that pressures above 3 MP are needed to reach maximum excess uptakes in the range of ca. 7 wt.%. Finally, we present the adsorption–desorption compression technology, allowing hydrogen to be compressed at 70 MPa by cooling/heating cycles between 77 and 298 K, and being an alternative to mechanical compressors. The cyclic, thermally driven hydrogen compression might open a new scenario within the vast field of hydrogen applications.

2017 ◽  
Vol 36 (3) ◽  
pp. 44-53
Author(s):  
G. D. Akpen ◽  
M. I. Aho ◽  
N. Baba

Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ,7000C and 8000C for 30 minutes. The same procedure was repeated for 60, 90, 120 and 150 minutes respectively. Activation was done using impregnationratios of 1:12, 1:6, 1:4, 1:3, and 1:2 respectively of ZnCl2 to carbonised Albizia saman pods by weight. The activated carbon was then dried in an oven at 1050C before crushing for sieve analysis. The following properties of the produced Albizia saman pod activated carbon (ASPAC) were determined: bulk density, carbon yield, surface area and ash, volatile matter and moisture contents. The highest surface area of 1479.29 m2/g was obtained at the optimum impregnation ratio, carbonization time and temperature of 1:6, 60 minutes and 5000C respectively. It was recommended that activated carbon should be prepared from Albizia saman pod with high potential for adsorption of pollutants given the high surface area obtained.Keywords: Albizia saman pod, activated carbon, carbonization, temperature, surface area


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


2011 ◽  
Vol 1334 ◽  
Author(s):  
Tyler G. Voskuilen ◽  
Timothée L. Pourpoint

ABSTRACTAn experimental study of hydrogen adsorption in a variety of high-surface area adsorbent materials has been conducted at room temperature and pressures up to 500 bar on high surface area activated carbons, zeolite templated carbons (ZTC), and metal organic frameworks (MOFs). For all materials, excess hydrogen adsorption isotherms were measured up to 500 bar and have been analyzed in terms of the BET surface area and pore size distribution. The materials were also evaluated for their increase in hydrogen storage density over compressed gas. It was determined that, due to the lower excess adsorption and skeletal densities for the microstructured materials, MOF-177 and ZTC have worse storage densities than compressed gas at most pressures, even when assuming a bed compaction factor of two, while the activated carbons offer marginal increases in storage density over the pressure range investigated.


2019 ◽  
Vol 5 (4) ◽  
pp. 82 ◽  
Author(s):  
Jemma Rowlandson ◽  
James Coombs OBrien ◽  
Karen Edler ◽  
Mi Tian ◽  
Valeska Ting

Lignin is a significant by-product of the paper pulping and biofuel industries. Upgrading lignin to a high-value product is essential for the economic viability of biorefineries for bioethanol production and environmentally benign pulping processes. In this work, the feasibility of lignin-derived activated carbons for hydrogen storage was studied using a Design of Experiments methodology, for a time and cost-efficient exploration of the synthesis process. Four factors (carbonisation temperature, activation temperature, carbonisation time, and activation time) were investigated simultaneously. Development of a mathematical model allowed the factors with the greatest impact to be identified using regression analysis for three responses: surface area, average pore size, and hydrogen uptake at 77 K and 1 bar. Maximising the surface area required activation conditions using the highest settings, however, a low carbonisation temperature was also revealed to be integral to prevent detrimental and excessive pore widening. A small pore size, vital for efficient hydrogen uptake, could be achieved by using low carbonisation temperature but also low activation temperatures. An optimum was achieved using the lowest carbonisation conditions (350 °C for 30 min) to retain a smaller pore size, followed by activation under the severest conditions (1000 °C for 60 min) to maximise surface area and hydrogen uptake. These conditions yielded a material with a high surface area of 1400 m2 g−1 and hydrogen uptake of 1.9 wt.% at 77 K and 1 bar.


Author(s):  
L. Scott Blankenship

Correction for ‘Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity’ by L. Scott Blankenship et al., Energy Environ. Sci., 2017, 10, 2552–2562, DOI: 10.1039/C7EE02616A.


Adsorption ◽  
2020 ◽  
Vol 26 (7) ◽  
pp. 1083-1091
Author(s):  
Mi Tian ◽  
Sébastien Rochat ◽  
Hamish Fawcett ◽  
Andrew D. Burrows ◽  
Christopher R. Bowen ◽  
...  

Abstract A detailed investigation has been carried out of the pre-polymerisation modification of the polymer of intrinsic microporosity PIM-1 by the addition of two methyl (Me) groups to its spirobisindane unit to create a new chemically modified PIM-1 analogue, termed MePIM. Our work explores the effects of this modification on the porosity of PIM-1 and hence on its gas sorption properties. MePIM was successfully synthesised using either low (338 K) or high (423 K) temperature syntheses. It was observed that introduction of methyl groups to the spirobisindane part of PIM-1 generates additional microporous spaces, which significantly increases both surface area and hydrogen storage capacity. The BET surface area (N2 at 77 K) was increased by ~ 12.5%, resulting in a ~ 25% increase of hydrogen adsorption after modification. MePIM also maintains the advantages of good processability and thermal stability. This work provides new insights on a facile polymer modification that enables enhanced gas sorption properties.


Sign in / Sign up

Export Citation Format

Share Document