scholarly journals Human Bocavirus Infection of Permanent Cells Differentiated to Air-Liquid Interface Cultures Activates Transcription of Pathways Involved in Tumorigenesis

Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 410 ◽  
Author(s):  
Verena Schildgen ◽  
Monika Pieper ◽  
Soumaya Khalfaoui ◽  
Wolfgang Arnold ◽  
Oliver Schildgen

The parvoviral human bocavirus (HBoV) is a respiratory pathogen, able to persist in infected cells. The viral DNA has been identified in colorectal and lung tumors and thus it was postulated that the virus could be associated with tumorigenesis. This assumption was supported by the fact that in HBoV-infected patients and in an in vitro cell culture system, pro-cancerogenic and -fibrotic cytokines were expressed. In this work, it is shown by a whole transcriptome analysis that, also at the mRNA level, several pathways leading to neoplasia and tumorigenesis are significantly upregulated. In total, a set of 54 transcripts are specifically regulated by HBoV, of which the majority affects canonical pathways that may lead to tumor development if they become deregulated. Moreover, pathways leading to necrosis, apoptosis and cell death are downregulated, supporting the hypothesis that HBoV might contribute to the development of some kinds of cancer.

2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Junhyoung Byun ◽  
Boa Song ◽  
Kyungwoo Lee ◽  
Byoungjae Kim ◽  
Hae Won Hwang ◽  
...  

Abstract Background Exposure to air particulate matter (PM) is associated with various diseases in the human respiratory system. To date, most in vitro studies showing cellular responses to PM have been performed in cell culture using a single cell type. There are few studies considering how multicellular networks communicate in a tissue microenvironment when responding to the presence of PM. Here, an in vitro three-dimensional (3D) respiratory mucosa-on-a-chip, composed of human nasal epithelial cells, fibroblasts, and endothelial cells, is used to recapitulate and better understand the effects of urban particulate matter (UPM) on human respiratory mucosa. Results We hypothesized that the first cells to contact with UPM, the nasal epithelial cells, would respond similar to the tissue microenvironment, and the 3D respiratory mucosa model would be a suitable platform to capture these events. First, whole transcriptome analysis revealed that UPM induced gene expression alterations in inflammatory and adhesion-related genes in human nasal epithelial cells. Next, we developed an in vitro 3D respiratory mucosa model composed of human nasal epithelial cells, fibroblasts, and endothelial cells and demonstrated that the model is structurally and functionally compatible with the respiratory mucosa. Finally, we used our model to expose human nasal epithelial cells to UPM, which led to a disruption in the integrity of the respiratory mucosa by decreasing the expression of zonula occludens-1 in both the epithelium and endothelium, while also reducing vascular endothelial cadherin expression in the endothelium. Conclusions We demonstrate the potential of the 3D respiratory mucosa model as a valuable tool for the simultaneous evaluation of multicellular responses caused by external stimuli in the human respiratory mucosa. We believe that the evaluation strategy proposed in the study will move us toward a better understanding of the detailed molecular mechanisms associated with pathological changes in the human respiratory system.


2002 ◽  
Vol 70 (6) ◽  
pp. 3234-3248 ◽  
Author(s):  
Sophie Dessus-Babus ◽  
Toni L. Darville ◽  
Francis P. Cuozzo ◽  
Kaethe Ferguson ◽  
Priscilla B. Wyrick

ABSTRACT The inflammatory response associated with Chlamydia trachomatis genital infections is thought to be initiated by the release of proinflammatory cytokines from infected epithelial cells. This study focuses on the interactions between C. trachomatis-infected HeLa cells and immune cells involved in the early stages of infection, i.e., neutrophils and macrophages. First, we showed that the expression of interleukin-11 (IL-11), an anti-inflammatory cytokine mainly active on macrophages, was upregulated at the mRNA level in the genital tracts of infected mice. Second, incubation of differentiated THP-1 (dTHP-1) cells or monocyte-derived macrophages (MdM) with basal culture supernatants from C. trachomatis serovar E- or serovar L2-infected HeLa cells resulted in macrophage activation with a differential release of tumor necrosis factor alpha (TNF-α) and upregulation of indoleamine 2,3-deoxygenase (IDO) but not of Toll-like receptor 2 and 4 mRNA expression. Third, coculture of infected HeLa cells with dTHP-1 cells resulted in a reduction in chlamydial growth, which was more dramatic for serovar E than for L2 and which was partially reversed by the addition of anti-TNF-α antibodies for serovar E or exogenous tryptophan for both serovars but was not reversed by the addition of superoxide dismutase or anti-IL-8 or anti-IL-1β antibodies. A gamma interferon-independent IDO mRNA upregulation was also detected in dTHP-1 cells from infected cocultures. Lastly, with a two-stage coculture system, we found that (i) supernatants from neutrophils added to the apical side of infected HeLa cell cultures were chlamydicidal and induced MdM to express antichlamydial activity and (ii) although polymorphonuclear leukocytes released more proinflammatory cytokines in response to serovar E- than in response to L2-infected cells, MdM were strongly activated by serovar L2 infection, indicating that the early inflammatory response generated with a nondisseminating or a disseminating strain is different.


Parasitology ◽  
2008 ◽  
Vol 135 (9) ◽  
pp. 1065-1073 ◽  
Author(s):  
M. STROHBUSCH ◽  
N. MÜLLER ◽  
A. HEMPHILL ◽  
G. GREIF ◽  
B. GOTTSTEIN

SUMMARYThe treatment ofNeospora caninuminfection in the bovine host is still at an experimental stage. In contrast to thein vivosituation, a wide range of compounds have been intensively investigated in cell-culture-based assays. Tools to demonstrate efficacy of treatment have remained conventional including morphological and cell biological criteria. In this work, we present a molecular assay that allows the distinction between live and dead parasites. Live parasites can be detected by measuring the mRNA level of specific genes, making use of the specific mRNA available in live cells. TheNcGra2gene ofN. caninum, which is known to be expressed in both tachyzoites and bradyzoites, was used to establish a quantitative real-time RT-PCR, for monitoring parasite viability. Validation of the systemin vitrowas achieved usingNeospora-infected cells that had been treated for 2–20 days with 30 μg/ml toltrazuril.NcGRA2-RT-real time PCR demonstrated that a 10-day toltrazuril-treatment exerted parasitostatic activity, as assessed by the presence ofNcGRA2-transcripts, whereas after a 14-day treatment period noNcGRA2-transcripts were detected, showing that the parasites were no longer viable. Concurrently, extended culture for a period of 4 weeks in the absence of the drug following the 14-day toltrazuril treatment did not lead to further parasite proliferation, confirming the parasiticidal effect of the treatment. This assay has the potential to be widely used in the development of novel drugs againstN. caninum, with a view to distinguishing between parasiticidal and parasitostatic efficacy of given compounds.


2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Haiyan Wang ◽  
Zhenzhen Zhang ◽  
Xing Xie ◽  
Beibei Liu ◽  
Yanna Wei ◽  
...  

ABSTRACT Mycoplasma hyopneumoniae is an important respiratory pathogen of pigs that causes persistent and secondary infections. However, the mechanisms by which this occurs are unclear. In this study, we established air-liquid interface culture systems for pig bronchial epithelial cells (ALI-PBECs) that were comparable to the conditions in the native bronchus in vivo. We used this ALI-PBECs model to study the infection and migration characteristics of M. hyopneumoniae in vitro. Based on the results, we confirmed that M. hyopneumoniae was able to adhere to ALI-PBECs and disrupt mucociliary function. Importantly, M. hyopneumoniae could migrate to the basolateral chamber through the paracellular route but not the transcellular pathway, and this was achieved by reversibly disrupting tight junctions (TJs) and increasing the permeability and damaging the integrity of the epithelial barrier. We examined the migration ability of M. hyopneumoniae using an ALI-PBECs model for the first time. The disruption of the epithelial barrier allowed M. hyopneumoniae to migrate to the basolateral chamber through the paracellular route, which may be related to immune evasion, extrapulmonary dissemination, and persistent infection of M. hyopneumoniae.


2021 ◽  
Vol 7 (5) ◽  
pp. 398
Author(s):  
Won-Yong Kim ◽  
Min-Hye Jeong ◽  
Sung-Hwan Yun ◽  
Jae-Seoun Hur

Lichens are prolific producers of natural products of polyketide origin. We previously described a culture of lichen-forming fungus (LFF) Cladonia macilenta that produces biruloquinone, a purple pigment that is a phenanthraquinone rarely found in nature. However, there was no genetic information on the biosynthesis of biruloquinone. To identify a biosynthetic gene cluster for biruloquinone, we mined polyketide synthase (PKS) genes from the genome sequence of a LFF isolated from thalli of C. macilenta. The 38 PKS in C. macilenta are highly diverse, many of which form phylogenetic clades with PKS previously characterized in non-lichenized fungi. We compared transcriptional profiles of the 38 PKS genes in two chemotypic variants, one producing biruloquinone and the other producing no appreciable metabolite in vitro. We identified a PKS gene (hereafter PKS21) that was highly upregulated in the LFF that produces biruloquinone. The boundaries of a putative biruloquinone gene cluster were demarcated by co-expression patterns of six clustered genes, including the PKS21. Biruloquinone gene clusters exhibited a high degree of synteny between related species. In this study we identified a novel PKS family responsible for the biosynthesis of biruloquinone through whole-transcriptome analysis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lucy Kappes ◽  
Ruba L. Amer ◽  
Sabine Sommerlatte ◽  
Ghada Bashir ◽  
Corinna Plattfaut ◽  
...  

Abstract Several studies reported a central role of the endothelin type A receptor (ETAR) in tumor progression leading to the formation of metastasis. Here, we investigated the in vitro and in vivo anti-tumor effects of the FDA-approved ETAR antagonist, Ambrisentan, which is currently used to treat patients with pulmonary arterial hypertension. In vitro, Ambrisentan inhibited both spontaneous and induced migration/invasion capacity of different tumor cells (COLO-357 metastatic pancreatic adenocarcinoma, OvCar3 ovarian carcinoma, MDA-MB-231 breast adenocarcinoma, and HL-60 promyelocytic leukemia). Whole transcriptome analysis using RNAseq indicated Ambrisentan’s inhibitory effects on the whole transcriptome of resting and PAR2-activated COLO-357 cells, which tended to normalize to an unstimulated profile. Finally, in a pre-clinical murine model of metastatic breast cancer, treatment with Ambrisentan was effective in decreasing metastasis into the lungs and liver. Importantly, this was associated with a significant enhancement in animal survival. Taken together, our work suggests a new therapeutic application for Ambrisentan in the treatment of cancer metastasis.


2017 ◽  
Author(s):  
Jiamin Chen ◽  
Billy T Lau ◽  
Noemi Andor ◽  
Sue M Grimes ◽  
Christine Handy ◽  
...  

ABSTRACTThe diverse cellular milieu of the gastric tissue microenvironment plays a critical role in normal tissue homeostasis and tumor development. However, few cell culture model can recapitulate the tissue microenvironment and intercellular signalingin vitro. Here we applied an air-liquid interface method to culture primary gastric organoids that contains epithelium with endogenous stroma. To characterize the microenvironment and intercellular signaling in this model, we analyzed the transcriptomes of over 5,000 individual cells from primary gastric organoids cultured at different time points. We identified epithelial cells, fibroblasts and macrophages at the early stage of organoid formation, and revealed that macrophages were polarized towards wound healing and tumor promotion. The organoids maintained both epithelial and fibroblast lineages during the course of time, and a subset of cells in both lineages expressed the stem cell markerLgr5. We identified thatRspo3was specifically expressed in the fibroblast lineage, providing an endogenous source of the R-spondin to activate Wnt signaling. Our studies demonstrate that air-liquid-interface-derived organoids provide a novel platform to study intercellular signaling and immune responsein vitro.


2020 ◽  
pp. 1-9
Author(s):  
Zhaohua Gong ◽  
Hongjin Chu ◽  
Jian Chen ◽  
Lixin Jiang ◽  
Benjiao Gong ◽  
...  

BACKGROUND: Previous studies revealed that DEP domain containing 1 (DEPDC1) is involved in the carcinogenesis and progression of several types of human cancer. However the role of DEPDC1 in gastric cancer has not been studied. OBJECTIVE: The objective of this study was to study the expression and pathophysiological function of DEPDC1 in gastric cancer. METHODS: DEPDC1 expression in gastric adenocarcinoma cells was examined with Western blot and qRT-PCR. Clinical pathological features of patients were determined by immunohistochemistry. The effect of DEPDC1 expression on cell proliferation was studied by in vitro cell proliferation assay; and cell cycle influence was assessed by ow cytometry. Survival curves were plotted using Kaplan-Meier. RESULTS: DEPDC1 was overexpressed in gastric adenocarcinoma tissues compared with the paired adjacent normal gastric tissues, in accordance with mRNA level downloaded from GEPIA database. DEPDC1 expression level was significantly associated with cancer metastasis and differentiation. DEPDC1 upregulation caused cell cycle accelerating from G1 to S phase, and it was correlated with poorer overall survival. CONCLUSION: Therefore, DEPDC1 upregulation in gastric adenocarcinoma is associated with tumor development and poor clinical outcomes of the patients, implying DEPDC1 might be a potential therapeutic target against gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document