scholarly journals GSK3-β Stimulates Claspin Degradation via β-TrCP Ubiquitin Ligase and Alters Cancer Cell Survival

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1073
Author(s):  
Cabrera ◽  
Raninga ◽  
Khanna ◽  
Freire

: Claspin is essential for activating the DNA damage checkpoint effector kinase Chk1, a target in oncotherapy. Claspin functions are tightly correlated to Claspin protein stability, regulated by ubiquitin-dependent proteasomal degradation. Here we identify Glycogen Synthase Kinase 3-β (GSK3-β) as a new regulator of Claspin stability. Interestingly, as Chk1, GSK3-β is a therapeutic target in cancer. GSK3-β inhibition or knockdown stabilizes Claspin, whereas a GSK3-β constitutively active form reduces Claspin protein levels by ubiquitination and proteasome-mediated degradation. Our results also suggest that GSK3-β modulates the interaction of Claspin with β-TrCP, a critical E3 ubiquitin ligase that regulates Claspin stability. Importantly, GSK3-β knock down increases Chk1 activation in response to DNA damage in a Claspin-dependent manner. Therefore, Chk1 activation could be a pro-survival mechanism that becomes activated upon GSK3-β inhibition. Importantly, treating triple negative breast cancer cell lines with Chk1 or GSK3-β inhibitors alone or in combination, demonstrates that Chk1/GSK3-β double inhibition restrains cell growth and triggers more apoptosis compared to individual treatments, thereby revealing novel possibilities for a combination therapy for cancer.

2004 ◽  
Vol 3 (5) ◽  
pp. 1307-1319 ◽  
Author(s):  
Nedra F. Wilson ◽  
Paul A. Lefebvre

ABSTRACT Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1292-1301 ◽  
Author(s):  
Daniela Flügel ◽  
Agnes Görlach ◽  
Thomas Kietzmann

Abstract The hypoxia-inducible transcription factor-1α (HIF-1α) is a major regulator of angiogenesis, carcinogenesis, and various processes by which cells adapt to hypoxic conditions. Therefore, the identification of critical players regulating HIF-1α is not only important for the understanding of angiogenesis and different cancer phenotypes, but also for unraveling new therapeutic options. We report a novel mechanism by which HIF-1α is degraded after glycogen synthase kinase-3 (GSK-3)–induced phosphorylation and recruitment of the ubiquitin ligase and tumor suppressor F-box and WD protein Fbw7. Further, experiments with GSK-3β and Fbw7-deficient cells revealed that GSK-3β and Fbw7-dependent HIF-1α degradation can be antagonized by ubiquitin-specific protease 28 (USP28). In agreement with this, Fbw7 and USP28 reciprocally regulated cell migration and angiogenesis in an HIF-1α–dependent manner. Therefore, we have identified a new pathway that could be targeted at the level of GSK-3, Fbw7, or USP28 to influence HIF-1α–dependent processes like angiogenesis and metastasis.


2016 ◽  
Vol 36 (9) ◽  
pp. 931-948 ◽  
Author(s):  
K Juarez-Moreno ◽  
EB Gonzalez ◽  
N Girón-Vazquez ◽  
RA Chávez-Santoscoy ◽  
JD Mota-Morales ◽  
...  

The wide application of silver nanoparticles (AgNPs) has pointed out the need to evaluate their potential risk and toxic effects on human health. Herein, the cytotoxic effects of Argovit™ AgNPs were evaluated on eight cancer cell lines. Further cytotoxic studies were performed in gynecological cancer cell lines from cervical (HeLa) and breast (MDA-MB-231 and MCF7) cancer. In both cases, the half maximal inhibitory concentration (IC50) of AgNPs produced the formation of reactive oxygen species (ROS) after 24 h of incubation, but it was not statistically significant compared with untreated cells. However, HeLa, MDA-MB-231, and MCF7 cells treated with the maximal IC of AgNPs induced the formation of ROS either at 12 or 24 h of incubation. Genotoxicity achieved by comet assay in HeLa, MDA-MB-231, and MCF7 cells revealed that exposure to IC50 of AgNPs does not induced noticeable DNA damage in the cells. However, the IC of AgNPs provoked severe DNA damage after 12 and 24 h of exposure. We conclude that, Argovit (polyvinylpyrrolidone-coated AgNPs) induce a cytotoxic effect in a time and dose-dependent manner in all the eight cancer cell lines tested. Nevertheless, the genotoxic effect is mainly restricted by the concentration effect. The results contribute to explore new therapeutic applications of AgNPs for malignances in murine models and to study in deep the cytotoxic and genotoxic effects of AgNPs in healthy cells at the surrounding tissue of the neoplasia.


2020 ◽  
Author(s):  
Laura Cheradame ◽  
Ida Chiara Guerrera ◽  
Julie Gaston ◽  
Alain Schmitt ◽  
Vincent Jung ◽  
...  

AbstractSTING (Stimulator of Interferon Genes) is a well-known endoplasmic reticulum-anchored adaptor of the innate immunity that triggers the expression of inflammatory cytokines in response to pathogen infection. In cancer cells, this pro-inflammatory pathway can be activated by genomic DNA damage potentiating antitumor immune responses. Here we report that STING promotes cancer cell survival and resistance to genotoxic treatment in a cell-autonomous manner. Mechanistically, we show that STING partly localizes at the inner nuclear membrane in various breast cancer cell lines and clinical tumor samples, and interacts with several proteins of the DNA damage response (DDR). STING overexpression enhances the amount of chromatin-bound DNA-dependent Protein Kinase (DNA-PK) complex, while STING silencing impairs DDR foci formation and DNA repair efficacy. Importantly, this function of STING is independent of its canonical pro-inflammatory pathway. This study highlights a previously unappreciated cell-autonomous tumor-promoting mechanism of STING that opposes its well-documented role in tumor immunosurveillance.Graphical abstract


Author(s):  
Mehdi Talebi ◽  
Mousa Vatanmakanian ◽  
Ali Mirzaei ◽  
Yaghoub Barfar ◽  
Maryam Hemmatzadeh ◽  
...  

Background: Platelet-rich (PRP) and Platelet-poor plasma (PPP) are widely used in research and clinical platforms mainly due to their capacities to enhance cell growth. Although short half-life (5 days) and the high price of platelet products pose challenges regarding their usage, they maintain the growth regulatory functions for weeks. Thus, we aimed to assess the supplementary values of these products in human CCRF-CEM cancer cells. Mechanistically, we also checked if the PRP/PPP treatment enhances YKL-40 expression as a known protein regulating cell growth. Methods: The PRP/PPP was prepared from healthy donors using manual stepwise centrifugation and phase separation. The viability of the cells treated with gradient PRP/PPP concentrations (2, 5, 10, and 15%) was measured by the MTT assay. The YKL-40 mRNA and protein levels were assessed using qRT-PCR and western blotting. The data were compared to FBS-treated cells. Result: Our findings revealed that the cells treated by PRP/PPP not only were morphologically comparable to those treated by FBS but also, they showed greater viability at the concentrations of 10 and 15%. Moreover, it was shown that PRP/PPP induce cell culture support, at least in part, via inducing YKL-40 expression at both mRNA and protein levels in a time- and dose-dependent manner. Conclusion: Collectively, by showing cell culture support comparable to FBS, the PRP/PPP might be used as good candidates to supplement the cancer cell culture and overcome concerns regarding the use of FBS as a non-human source in human cancer research.


2002 ◽  
Vol 103 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Allal Boutajangout ◽  
Karelle Leroy ◽  
Authelet M. ◽  
Brian Anderton ◽  
Jean-Pierre Brion ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Eutteum Jeong ◽  
Owen A Brady ◽  
José A Martina ◽  
Mehdi Pirooznia ◽  
Ilker Tunc ◽  
...  

The transcription factors TFE3 and TFEB cooperate to regulate autophagy induction and lysosome biogenesis in response to starvation. Here we demonstrate that DNA damage activates TFE3 and TFEB in a p53 and mTORC1 dependent manner. RNA-Seq analysis of TFEB/TFE3 double-knockout cells exposed to etoposide reveals a profound dysregulation of the DNA damage response, including upstream regulators and downstream p53 targets. TFE3 and TFEB contribute to sustain p53-dependent response by stabilizing p53 protein levels. In TFEB/TFE3 DKOs, p53 half-life is significantly decreased due to elevated Mdm2 levels. Transcriptional profiles of genes involved in lysosome membrane permeabilization and cell death pathways are dysregulated in TFEB/TFE3-depleted cells. Consequently, prolonged DNA damage results in impaired LMP and apoptosis induction. Finally, expression of multiple genes implicated in cell cycle control is altered in TFEB/TFE3 DKOs, revealing a previously unrecognized role of TFEB and TFE3 in the regulation of cell cycle checkpoints in response to stress.


2021 ◽  
Vol 118 (25) ◽  
pp. e2104944118
Author(s):  
Sara E. Konopelski Snavely ◽  
Michael W. Susman ◽  
Ryan C. Kunz ◽  
Jia Tan ◽  
Srisathya Srinivasan ◽  
...  

Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development [R. T. Moon et al., Development 119, 97–111 (1993); I. Oishi et al., Genes Cells 8, 645–654 (2003)], but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a β-catenin–independent, ubiquitin-proteasome system–dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, Casein kinase 1, and Glycogen synthase kinase 3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain [M. Flynn, O. Saha, P. Young, BMC Evol. Biol. 11, 235 (2011)], which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.


2015 ◽  
Vol 112 (18) ◽  
pp. 5732-5737 ◽  
Author(s):  
Ya-Lin Huang ◽  
Zeinab Anvarian ◽  
Gabriele Döderlein ◽  
Sergio P. Acebron ◽  
Christof Niehrs

DuringXenopusdevelopment, Wnt signaling is thought to function first after midblastula transition to regulate axial patterning via β-catenin–mediated transcription. Here, we report that Wnt/glycogen synthase kinase 3 (GSK3) signaling functions posttranscriptionally already in mature oocytes via Wnt/stabilization of proteins (STOP) signaling. Wnt signaling is induced in oocytes after their entry into meiotic metaphase II and declines again upon exit into interphase. Wnt signaling inhibits Gsk3 and thereby protects proteins from polyubiquitination and degradation in mature oocytes. In a protein array screen, we identify a cluster of mitotic effector proteins that are polyubiquitinated in a Gsk3-dependent manner inXenopus. Consequently inhibition of maternal Wnt/STOP signaling, but not β-catenin signaling, leads to early cleavage arrest after fertilization. The results support a novel role for Wnt signaling in cell cycle progression independent of β-catenin.


Sign in / Sign up

Export Citation Format

Share Document