scholarly journals Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 852 ◽  
Author(s):  
Michael F. Coleman ◽  
Alyssa J. Cozzo ◽  
Alexander J. Pfeil ◽  
Suhas K. Etigunta ◽  
Stephen D. Hursting

Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction—two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laia Gorchs ◽  
Sultan Ahmed ◽  
Chanté Mayer ◽  
Alisa Knauf ◽  
Carlos Fernández Moro ◽  
...  

Abstract The pancreatic tumour stroma is composed of phenotypically heterogenous cancer-associated fibroblasts (CAFs) with both pro- and anti-tumorigenic functions. Here, we studied the impact of calcipotriol, a vitamin D3 analogue, on the activation of human pancreatic CAFs and T cells using 2- and 3-dimensional (2D, 3D) cell culture models. We found that calcipotriol decreased CAF proliferation and migration and reduced the release of the pro-tumorigenic factors prostaglandin E2, IL-6, periostin, and leukemia inhibitory factor. However, calcipotriol promoted PD-L1 upregulation, which could influence T cell mediated tumour immune surveillance. Calcipotriol reduced T cell proliferation and production of IFN-γ, granzyme B and IL-17, but increased IL-10 secretion. These effects were even more profound in the presence of CAFs in 2D cultures and in the presence of CAFs and pancreatic tumour cell line (PANC-1) spheroids in 3D cultures. Functional assays on tumour infiltrating lymphocytes also showed a reduction in T cell activation by calcipotriol. This suggests that calcipotriol reduces the tumour supportive activity of CAFs but at the same time reduces T cell effector functions, which could compromise the patients’ tumour immune surveillance. Thus, vitamin D3 analogues appear to have dual functions in the context of pancreatic cancer, which could have important clinical implications.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3074-3074 ◽  
Author(s):  
Spencer Liang ◽  
Ofer Levy ◽  
Sudipto Ganguly ◽  
Maya Kotturi ◽  
Ilan Vaknin ◽  
...  

3074 Background: While inhibitors of CTLA4 and PD1 have emerged as effective cancer therapies, the majority of treated patients do not derive long term benefit. Employing our computational discovery platform, we discovered PVRIG as an immune suppressive molecule expressed on T and NK cells and identified COM701, an antibody (Ab) targeting human PVRIG that enhances T cell function and anti-tumor responses. Methods: Anti-human PVRIG Ab COM701 was identified as an antagonistic Ab that enhanced T cell function in multiple assays. Antagonistic anti-mouse PVRIG Abs and PVRIG deficient (PVRIG-/-) mice were generated and characterized using syngeneic tumor models. Results: PVRIG was induced upon T cell activation, with long term activation leading to the highest expression. PVRL2 was identified as the ligand for PVRIG, placing PVRIG in the DNAM/TIGIT immunoreceptor axis. Compared to normal adjacent tissues, PVRIG and PVRL2 were both induced in the tumor microenvironment of several human cancers. To target PVRIG for therapeutic intervention, we identified COM701, a high affinity Ab that disrupts the interaction of PVRIG with PVRL2. COM701 enhanced CD8 T cell proliferation and IFN-g production in vitro and had an additive or synergistic effect on T cell activation when further combined with an anti-PD1 or anti-TIGIT Ab. Consistent with a checkpoint function for human PVRIG, mouse PVRIG-/- T cells showed increased function compared to wild type T cells. A surrogate antagonistic anti-mPVRIG Ab reduced growth of CT26 and B16 tumors when combined with an anti-PDL1 Ab in vivo. MC38 tumors also grew slower in PVRIG-/- mice compared to wild type mice and ex vivo analysis pointed to functional differences in anti-cancer immunity. Conclusions: We demonstrated that targeting PVRIG with COM701, a high affinity antagonistic Ab, increased human T cell function. We further showed that PVRIG was induced in the tumor microenvironment and that disruption of PVRIG/PVRL2 interaction resulted in reduced tumor growth in preclinical models. These data demonstrate that PVRIG is a promising target for the treatment of cancer and provide the rationale for COM701 as a potential cancer immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Mathijs P. Scholtes ◽  
Florus C. de Jong ◽  
Tahlita C. M. Zuiverloon ◽  
Dan Theodorescu

Metabolic reprogramming (MR) is an upregulation of biosynthetic and bioenergetic pathways to satisfy increased energy and metabolic building block demands of tumors. This includes glycolytic activity, which deprives the tumor microenvironment (TME) of nutrients while increasing extracellular lactic acid. This inhibits cytotoxic immune activity either via direct metabolic competition between cancer cells and cytotoxic host cells or by the production of immune-suppressive metabolites such as lactate or kynurenine. Since immunotherapy is a major treatment option in patients with metastatic urothelial carcinoma (UC), MR may have profound implications for the success of such therapy. Here, we review how MR impacts host immune response to UC and the impact on immunotherapy response (including checkpoint inhibitors, adaptive T cell therapy, T cell activation, antigen presentation, and changes in the tumor microenvironment). Articles were identified by literature searches on the keywords or references to “UC” and “MR”. We found several promising therapeutic approaches emerging from preclinical models that can circumvent suppressive MR effects on the immune system. A select summary of active clinical trials is provided with examples of possible options to enhance the effectiveness of immunotherapy. In conclusion, the literature suggests manipulating the MR is feasible and may improve immunotherapy effectiveness in UC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A720-A720
Author(s):  
Hridesh Banerjee ◽  
Hector Nieves-Rosado ◽  
Benjamin Murter ◽  
Lawrence Kane

BackgroundRegulatory T cells (T reg) are critical mediators of self-tolerance but can also limit effective anti-tumor immunity. We and others previously reported that 40–60% percent of T reg-infiltrating head and neck cancer (HNC) and other tumors highly express Tim-3, compared with about 5% in lymphoid organs, it therefore gets imperative to characterize if Tim-3 is driving any T reg specific function in tumor microenvironment and under homeostasis.MethodsUsing a conditional TIM-3 inducible and knockout mouse model developed in our lab, we have performed syngeneic tumor challenges in T reg-specific Tim-3 transgenic and knockout mice (FoxP3ERT2CreSFS-Tim-3 and FoxP3ERT2Cre-FLEX4). We have also characterized the tumor immune infiltrate of these mice to understand the impact of T reg specific Tim-3induction and deficiency on the immune landscape.ResultsTim-3 induction on T reg leads to rapid growth associated with higher progression of CD8 compartment towards exhaustion, while TIm-3 knockout in T reg specific manner leads top overall decline in T reg compartment in tumors associated with lower exhaustion in the CD8 compartment and decrease in tumor burden,ConclusionsTumor-infiltrating Tim-3+ Treg have enhanced suppressive function and display a more effector-like phenotype. Using a novel mouse model with cell type-specific Tim-3 expression, we show here that expression of Tim-3 by Treg is sufficient to drive Treg to a more effector-like phenotype, and increases suppressive activity, effector T cell exhaustion and tumor growth. We also show that inducible deletion of Tim-3 specifically from Treg enhances anti-tumor immunity and decrease in tumor burden along with a decrease in tumor associated Treg compartment. These findings may help to reconcile previous reports that some Tim-3 antibodies enhance T cell responses in vivo, while expression of Tim-3 has a cell-intrinsic ability to enhance TCR signaling and T cell activation. A major role of Tim-3 was found to be mediated through IL-10 and IL-10 R pathway in both Treg and CD8 compartment. Thus, we propose that Tim-3 regulates anti-tumor immunity at least in part through enhancement of Treg function. To our knowledge, this is the first example in which expression of a single co-stimulatory molecule is sufficient to drive differentiation of Treg in this manner.AcknowledgementsWe acknoledge Dr. Robert L. Ferris and Dr. Greg M. Delgoffe for their inputs and guidance with human and metabolism associated experiments.


2017 ◽  
Vol 218 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Konstantia Angelidou ◽  
Peter W Hunt ◽  
Alan L Landay ◽  
Cara C Wilson ◽  
Benigno Rodriguez ◽  
...  

2014 ◽  
Vol 67 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Lu Zheng ◽  
Babafemi Taiwo ◽  
Rajesh T. Gandhi ◽  
Peter W. Hunt ◽  
Ann C. Collier ◽  
...  

AIDS ◽  
2013 ◽  
Vol 27 (13) ◽  
pp. 2101-2110 ◽  
Author(s):  
Judith J. Lok ◽  
Peter W. Hunt ◽  
Ann C. Collier ◽  
Constance A. Benson ◽  
Mallory D. Witt ◽  
...  

2018 ◽  
Author(s):  
Jerome S. Harms ◽  
Mike Khan ◽  
Cherisse Hall ◽  
Gary A. Splitter ◽  
E. Jane Homan ◽  
...  

ABSTRACTBrucella spp are intracellular pathogenic bacteria remarkable in their ability to escape immune surveillance and therefore inflict a state of chronic disease within the host. To enable further immune response studies, Brucella were engineered to express the well characterized chicken ovalbumin (OVA). Surprisingly, we found that CD8 T cells bearing T cell receptors (TCR) nominally specific for the OVA peptide SIINFEKL (OT-1) reacted to parental Brucella-infected targets as well as OVA-expressing Brucella variants in cytotoxicity assays. Furthermore, splenocytes from Brucella immunized mice produced IFN-γ and exhibited cytotoxicity in response to SIINFEKL-pulsed target cells. To determine if the SIINFEKL-reactive OT-1 TCR could be cross-reacting to Brucella peptides, we searched the Brucella proteome using an algorithm to generate a list of near-neighbor nonamer peptides that would bind to H2Kb. Selecting five Brucella peptide candidates, along with controls, we verified that several of these peptides mimicked SIINFEKL resulting in T cell activation through the “SIINFEKL-specific” TCR. Activation was dependent on peptide concentration as well as sequence. Our results underscore the complexity and ubiquity of cross-reactivity in T cell recognition. This cross-reactivity may enable microbes such as Brucella to escape immune surveillance by presenting peptides similar to the host, and may also lead to the activation of autoreactive T cells.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


2020 ◽  
Vol 8 (2) ◽  
pp. e001521
Author(s):  
Javier Arranz-Nicolás ◽  
Miguel Martin-Salgado ◽  
Cristina Rodríguez-Rodríguez ◽  
Rosa Liébana ◽  
Maria C Moreno-Ortiz ◽  
...  

BackgroundThe inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform.MethodsWe used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells.ResultsWe demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice.ConclusionsOur results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.


Sign in / Sign up

Export Citation Format

Share Document