scholarly journals Malignant Pleural Mesothelioma Interactome with 364 Novel Protein-Protein Interactions

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1660
Author(s):  
Kalyani B. Karunakaran ◽  
Naveena Yanamala ◽  
Gregory Boyce ◽  
Michael J. Becich ◽  
Madhavi K. Ganapathiraju

Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the lung, with a median survival of less than one year. We constructed an ‘MPM interactome’ with over 300 computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database (HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with normal pleura and with other thoracic tumors, genes whose high expression has been correlated with unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-associated versus drug-induced differential expression profiles, we identified five potentially repurposable drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes is a powerful approach with high translational impact. It shows how MPM-associated genes identified by various high throughput studies are functionally linked, leading to clinically translatable results such as repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization and advanced search capabilities.

2021 ◽  
Author(s):  
Kalyani B. Karunakaran ◽  
Madhavi K. Ganapathiraju

Abstract Malignant peritoneal mesothelioma (MPeM) is an aggressive cancer affecting the peritoneal lining of the abdominal cavity and intra-abdominal organs, with a median survival of ~2.5 years. We constructed an ‘MPeM interactome’ with over 400 computationally predicted protein-protein interactions (PPIs) and over 4,700 known PPIs of 59 literature-curated genes whose activity affects MPeM. Known PPIs of the 59 MPeM-associated genes were derived from BioGRID and HPRD databases. Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. 75.6% of the interactome and 65% of the novel interactors in it were supported by transcriptomic evidence in rodent and human peritoneal mesothelioma/mesothelial cell lines and tumor specimens. 152 drugs targeted 427 proteins in the MPeM interactome. Comparative transcriptome analysis of peritoneal mesothelioma-associated versus drug-induced gene expression profiles revealed 39 repurposable drugs, out of which 29 were effective against peritoneal/pleural mesothelioma and/or peritoneal metastasis/primary peritoneal cancer in clinical trials, animal models or cell lines. Functional modules of chromosomal segregation, transcriptional deregulation, positive regulation of IL-6 production and hematopoiesis were identified from the interactome. Genes with tissue-specific expression in 2 sites of extramedullary hematopoiesis (spleen and thymus) and those correlated with unfavorable prognosis in liver, renal, pancreatic and lung cancers were noted. MPeM interactome showed extensive overlap with the malignant pleural mesothelioma (MPM) interactome and MPM cell line expression profiles. Our findings demonstrate the utility of the MPeM interactome in discovering systems-level functional links among MPeM genes and generating clinically translatable results such as repurposed drugs.


2018 ◽  
Author(s):  
Kalyani B. Karunakaran ◽  
Naveena Yanamala ◽  
Gregory Boyce ◽  
Madhavi K. Ganapathiraju

AbstractMalignant pleural mesothelioma (MPM) is an aggressive cancer of the thorax with a median survival of one year. We constructed an ‘MPM interactome’ with over 300 computationally predicted PPIs and over 1300 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from BioGRID and HPRD databases. Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, gene expression in microarray experiments, protein domains and tissue membership, and classifies the pairwise features asinteractingornon-interactingbased on a random forest model. To our satisfaction, the interactome is significantly enriched with genes differentially expressed in MPM tumors compared with normal pleura, and with other thoracic tumors. The interactome is also significantly enriched with genes whose high expression has been correlated with unfavorable prognosis in lung cancer, and with genes differentially expressed on crocidolite exposure. 28 of the interactors of MPM proteins are targets of 147 FDA-approved drugs. By comparing differential expression profiles induced by drug to profiles induced by MPM, potentially repurposable drugs are identified from this drug list. Development of PPIs of disease-specific set of genes is a powerful approach with high translational impact – the interactome is a vehicle to piece together an integrated view on how genes associated with MPM through various high throughput studies are functionally linked, leading to clinically translatable results such as clinical trials with repurposed drugs. The PPIs are made available on a webserver, calledWiki-Pi MPMathttp://severus.dbmi.pitt.edu/wiki-MPMwith advanced search capabilities.One Sentence SummaryMesothelioma Interactome with 367 novel protein-protein interactions may shed light on the mechanisms of cancer genesis and progression


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Satoshi Yamanaka ◽  
Yuto Horiuchi ◽  
Saya Matsuoka ◽  
Kohki Kido ◽  
Kohei Nishino ◽  
...  

AbstractProteolysis-targeting chimaeras (PROTACs) as well as molecular glues such as immunomodulatory drugs (IMiDs) and indisulam are drugs that induce interactions between substrate proteins and an E3 ubiquitin ligases for targeted protein degradation. Here, we develop a workflow based on proximity-dependent biotinylation by AirID to identify drug-induced neo-substrates of the E3 ligase cereblon (CRBN). Using AirID-CRBN, we detect IMiD-dependent biotinylation of CRBN neo-substrates in vitro and identify biotinylated peptides of well-known neo-substrates by mass spectrometry with high specificity and selectivity. Additional analyses reveal ZMYM2 and ZMYM2-FGFR1 fusion protein—responsible for the 8p11 syndrome involved in acute myeloid leukaemia—as CRBN neo-substrates. Furthermore, AirID-DCAF15 and AirID-CRBN biotinylate neo-substrates targeted by indisulam and PROTACs, respectively, suggesting that this approach has the potential to serve as a general strategy for characterizing drug-inducible protein–protein interactions in cells.


2020 ◽  
Vol 21 (14) ◽  
pp. 4856 ◽  
Author(s):  
Irene Dell’Anno ◽  
Marcella Barbarino ◽  
Elisa Barone ◽  
Antonio Giordano ◽  
Luca Luzzi ◽  
...  

For malignant pleural mesothelioma (MPM) novel therapeutic strategies are urgently needed. In a previous study, we identified 51 putative cancer genes over-expressed in MPM tissues and cell lines. Here, we deepened the study on nine of them (ASS1, EIF4G1, GALNT7, GLUT1, IGF2BP3 (IMP3), ITGA4, RAN, SOD1, and THBS2) to ascertain whether they are truly mesothelial cancer driver genes (CDGs) or genes overexpressed in an adaptive response to the tumoral progression (“passenger genes”). Through a fast siRNA-based screening, we evaluated the consequences of gene depletion on migration, proliferation, colony formation capabilities, and caspase activities of four MPM (Mero-14, Mero-25, IST-Mes2, and NCI-H28) and one SV40-immortalized mesothelial cell line (MeT-5A) as a non-malignant model. The depletion of EIF4G1 and RAN significantly reduced cell proliferation and colony formation and increased caspase activity. In particular, the findings for RAN resemble those observed for other types of cancer. Thus, we evaluated the in vitro effects of importazole (IPZ), a small molecule inhibitor of the interaction between RAN and importin-β. We showed that IPZ could have effects similar to those observed following RAN gene silencing. We also found that primary cell lines from one out of three MPM patients were sensitive to IPZ. As EIF4G1 and RAN deserve further investigation with additional in vitro and in vivo studies, they emerged as promising CDGs, suggesting that their upregulation could play a role in mesothelial tumorigenesis and aggressiveness. Furthermore, present data propose the molecular pathways dependent on RAN as a putative pharmacological target for MPM patients in the view of a future personalized medicine.


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 510
Author(s):  
Maho Yamamoto ◽  
Rina Kondo ◽  
Haruka Hozumi ◽  
Seita Doi ◽  
Miwako Denda ◽  
...  

During screening of protein-protein interactions, using human protein arrays carrying 19,676 recombinant glutathione s-transferase (GST)-fused human proteins, we identified the high-mobility protein group 20A (HMG20A) as a novel S100A6 binding partner. We confirmed the Ca2+-dependent interaction of HMG20A with S100A6 by the protein array method, biotinylated S100A6 overlay, and GST-pulldown assay in vitro and in transfected COS-7 cells. Co-immunoprecipitation of S100A6 with HMG20A from HeLa cells in a Ca2+-dependent manner revealed the physiological relevance of the S100A6/HMG20A interaction. In addition, HMG20A has the ability to interact with S100A1, S100A2, and S100B in a Ca2+-dependent manner, but not with S100A4, A11, A12, and calmodulin. S100A6 binding experiments using various HMG20A mutants revealed that Ca2+/S100A6 interacts with the C-terminal region (residues 311–342) of HMG20A with stoichiometric binding (HMG20A:S100A6 dimer = 1:1). This was confirmed by the fact that a GST-HMG20A mutant lacking the S100A6 binding region (residues 311–347, HMG20A-ΔC) failed to interact with endogenous S100A6 in transfected COS-7 cells, unlike wild-type HMG20A. Taken together, these results identify, for the first time, HMG20A as a target of Ca2+/S100 proteins, and may suggest a novel linkage between Ca2+/S100 protein signaling and HMG20A function, including in the regulation of neural differentiation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Meilin Chan ◽  
Licun Wu ◽  
Zhihong Yun ◽  
Trevor D. McKee ◽  
Michael Cabanero ◽  
...  

AbstractMalignant pleural mesothelioma (MPM) is an aggressive neoplasm originating from the pleura. Non-epithelioid (biphasic and sarcomatoid) MPM are particularly resistant to therapy. We investigated the role of the GITR-GITRL pathway in mediating the resistance to therapy. We found that GITR and GITRL expressions were higher in the sarcomatoid cell line (CRL5946) than in non-sarcomatoid cell lines (CRL5915 and CRL5820), and that cisplatin and Cs-137 irradiation increased GITR and GITRL expressions on tumor cells. Transcriptome analysis demonstrated that the GITR-GITRL pathway was promoting tumor growth and inhibiting cell apoptosis. Furthermore, GITR+ and GITRL+ cells demonstrated increased spheroid formation in vitro and in vivo. Using patient derived xenografts (PDXs), we demonstrated that anti-GITR neutralizing antibodies attenuated tumor growth in sarcomatoid PDX mice. Tumor immunostaining demonstrated higher levels of GITR and GITRL expressions in non-epithelioid compared to epithelioid tumors. Among 73 patients uniformly treated with accelerated radiation therapy followed by surgery, the intensity of GITR expression after radiation negatively correlated with survival in non-epithelioid MPM patients. In conclusion, the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma, associated with tumor stemness and resistance to therapy. Blocking the GITR-GITRL pathway could be a new therapeutic target for non-epithelioid mesothelioma.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


Author(s):  
Liqing Jia ◽  
Xiaolu Ge ◽  
Chao Du ◽  
Linna Chen ◽  
Yanhong Zhou ◽  
...  

Abstract Background Eukaryotic protein translation elongation factor 1α2 (EEF1A2) is an oncogene that promotes the progression of breast and pancreatic cancer. In this study, we aimed to elucidate the oncogenic function of EEF1A2 in the metastasis of lung adenocarcinoma (LUAD). Methods Immunohistochemistry and western blot were used to study EEF1A2 expression levels in LUAD tissues and cells, respectively. The role of EEF1A2 in LUAD progression were investigated in vitro and in vivo. We identified potential EEF1A2-binding proteins by liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. Protein–protein interactions were determined by immunofluorescence and co-immunoprecipitation (Co-IP). Results In this study, we report that EEF1A2 mediates the epithelial–mesenchymal transformation (EMT), to promote the metastasis of LUAD cells in vitro and in vivo. Moreover, EEF1A2 interacts with HSP90AB1 to increase TGFβ Receptor (TβR)-I, and TβRII expression, followed by enhanced SMAD3 and pSMAD3 expression and nuclear localisation, which promotes the EMT of LUAD cells. Overexpression of EEF1A2 in cancer tissues is associated with poor prognosis and short survival of patients with LUAD. Conclusions These findings underscore the molecular functions of EEF1A2 in LUAD metastasis and indicate that EEF1A2 represents a promising target in the treatment of aggressive LUAD.


1994 ◽  
Vol 14 (9) ◽  
pp. 6021-6029
Author(s):  
R Metz ◽  
A J Bannister ◽  
J A Sutherland ◽  
C Hagemeier ◽  
E C O'Rourke ◽  
...  

Transcriptional activation in eukaryotes involves protein-protein interactions between regulatory transcription factors and components of the basal transcription machinery. Here we show that c-Fos, but not a related protein, Fra-1, can bind the TATA-box-binding protein (TBP) both in vitro and in vivo and that c-Fos can also interact with the transcription factor IID complex. High-affinity binding to TBP requires c-Fos activation modules which cooperate to activate transcription. One of these activation modules contains a TBP-binding motif (TBM) which was identified through its homology to TBP-binding viral activators. This motif is required for transcriptional activation, as well as TBP binding. Domain swap experiments indicate that a domain containing the TBM can confer TBP binding on Fra-1 both in vitro and in vivo. In vivo activation experiments indicate that a GAL4-Fos fusion can activate a promoter bearing a GAL4 site linked to a TATA box but that this activity does not occur at high concentrations of GAL4-Fos. This inhibition (squelching) of c-Fos activity is relieved by the presence of excess TBP, indicating that TBP is a direct functional target of c-Fos. Removing the TBM from c-Fos severely abrogates activation of a promoter containing a TATA box but does not affect activation of a promoter driven only by an initiator element. Collectively, these results suggest that c-Fos is able to activate via two distinct mechanisms, only one of which requires contact with TBP. Since TBP binding is not exhibited by Fra-1, TBP-mediated activation may be one characteristic that discriminates the function of Fos-related proteins.


Sign in / Sign up

Export Citation Format

Share Document