scholarly journals Detecting and Characterizing A-To-I microRNA Editing in Cancer

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1699
Author(s):  
Gioacchino P. Marceca ◽  
Luisa Tomasello ◽  
Rosario Distefano ◽  
Mario Acunzo ◽  
Carlo M. Croce ◽  
...  

Adenosine to inosine (A-to-I) editing consists of an RNA modification where single adenosines along the RNA sequence are converted into inosines. Such a biochemical transformation is catalyzed by enzymes belonging to the family of adenosine deaminases acting on RNA (ADARs) and occurs either co- or post-transcriptionally. The employment of powerful, high-throughput detection methods has recently revealed that A-to-I editing widely occurs in non-coding RNAs, including microRNAs (miRNAs). MiRNAs are a class of small regulatory non-coding RNAs (ncRNAs) acting as translation inhibitors, known to exert relevant roles in controlling cell cycle, proliferation, and cancer development. Indeed, a growing number of recent researches have evidenced the importance of miRNA editing in cancer biology by exploiting various detection and validation methods. Herein, we briefly overview early and currently available A-to-I miRNA editing detection and validation methods and discuss the significance of A-to-I miRNA editing in human cancer.

Author(s):  
Gioacchino P. Marceca ◽  
Luisa Tomasello ◽  
Rosario Distefano ◽  
Mario Acunzo ◽  
Carlo Croce ◽  
...  

RNA editing involves the insertion, deletion or substitution of single nucleotides within a RNA molecule, without altering the DNA sequence. Adenosine to inosine (A-to-I) editing consists of an RNA modification where single adenosines along the RNA sequence are converted into inosines. Such a biochemical transformation is catalyzed by enzymes belonging to the family of adenosine deaminases acting on RNA (ADARs) and occurs either co- or post-transcriptionally. Initially, the A-to-I RNA editing phenomenon was discovered and studied in messenger RNAs (mRNAs), where it can influence RNA splicing and cause the recoding of codon sequences. The employment of more powerful, high-throughput detection methods has recently revealed that A-to-I editing widely occurs in non-coding RNAs, including microRNAs (miRNAs). MiRNAs are a class of small regulatory non-coding RNAs (ncRNAs) acting as translation inhibitors, known to exert relevant roles in controlling cell cycle, proliferation, and cancer development. Indeed, a growing number of recent researches have evidenced the importance of miRNA editing in cancer biology by exploiting various detection and validation methods. Herein, we briefly overview early and currently available A-to-I miRNA editing detection and validation methods and discuss the significance of A-to-I miRNA editing in human cancer.


2020 ◽  
Vol 11 (11) ◽  
pp. 792-808 ◽  
Author(s):  
Lin-Yong Zhao ◽  
Jinghui Song ◽  
Yibin Liu ◽  
Chun-Xiao Song ◽  
Chengqi Yi

Abstract Over 17 and 160 types of chemical modifications have been identified in DNA and RNA, respectively. The interest in understanding the various biological functions of DNA and RNA modifications has lead to the cutting-edged fields of epigenomics and epitranscriptomics. Developing chemical and biological tools to detect specific modifications in the genome or transcriptome has greatly facilitated their study. Here, we review the recent technological advances in this rapidly evolving field. We focus on high-throughput detection methods and biological findings for these modifications, and discuss questions to be addressed as well. We also summarize third-generation sequencing methods, which enable long-read and single-molecule sequencing of DNA and RNA modification.


2020 ◽  
Vol 20 (10) ◽  
pp. 847-854
Author(s):  
Ronald Bartzatt

Cancer of the prostate are cancers in which most incidences are slow-growing, and in the U.S., a record of 1.2 million new cases of prostate cancer occurred in 2018. The rates of this type of cancer have been increasing in developing nations. The risk factors for prostate cancer include age, family history, and obesity. It is believed that the rate of prostate cancer is correlated with the Western diet. Various advances in methods of radiotherapy have contributed to lowering morbidity. Therapy for hormone- refractory prostate cancer is making progress, for almost all men with metastases will proceed to hormone-refractory prostate cancer. Smoking cigarettes along with the presence of prostate cancer has been shown to cause a higher risk of mortality in prostate cancer. The serious outcome of incontinence and erectile dysfunction result from the cancer treatment of surgery and radiation, particularly for prostate- specific antigen detected cancers that will not cause morbidity or mortality. Families of patients, as well as patients, are profoundly affected following the diagnosis of prostate cancer. Poor communication between spouses during prostate cancer increases the risk for poor adjustment to prostate cancer. The use of serum prostate-specific antigen to screen for prostate cancer has led to a greater detection, in its early stage, of this cancer. Prostate cancer is the most common malignancy in American men, accounting for more than 29% of all diagnosed cancers and about 13% of all cancer deaths. A shortened course of hormonal therapy with docetaxel following radical prostatectomy (or radiation therapy) for high-risk prostate cancer has been shown to be both safe and feasible. Patients treated with docetaxel-estramustine had a prostate-specific antigen response decline of at least 50%. Cancer vaccines are an immune-based cancer treatment that may provide the promise of a non-toxic but efficacious therapeutic alternative for cancer patients. Further studies will elucidate improved methods of detection and treatment.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yiqing Cai ◽  
Rui Feng ◽  
Tiange Lu ◽  
Xiaomin Chen ◽  
Xiangxiang Zhou ◽  
...  

AbstractN6-methyladenosine (m6A) is a prevalent internal RNA modification in higher eukaryotic cells. As the pivotal m6A regulator, RNA methyltransferase-like 3 (METTL3) is responsible for methyl group transfer in the progression of m6A modification. This epigenetic regulation contributes to the structure and functional regulation of RNA and further promotes tumorigenesis and tumor progression. Accumulating evidence has illustrated the pivotal roles of METTL3 in a variety of human cancers. Here, we systemically summarize the interaction between METTL3 and RNAs, and illustrate the multiple functions of METTL3 in human cancer. METLL3 is aberrantly expressed in a variety of tumors. Elevation of METTL3 is usually associated with rapid progression and poor prognosis of tumors. On the other hand, METTL3 may also function as a tumor suppressor in several cancers. Based on the tumor-promoting effect of METTL3, the possibility of applying METTL3 inhibitors is further discussed, which is expected to provide novel insights into antitumor therapy.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 527 ◽  
Author(s):  
Sonali Pal ◽  
Manoj Garg ◽  
Amit Kumar Pandey

Amongst the various gynecological malignancies affecting female health globally, ovarian cancer is one of the predominant and lethal among all. The identification and functional characterization of long non-coding RNAs (lncRNAs) are made possible with the advent of RNA-seq and the advancement of computational logarithm in understanding human disease biology. LncRNAs can interact with deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins and their combinations. Moreover, lncRNAs regulate orchestra of diverse functions including chromatin organization and transcriptional and post-transcriptional regulation. LncRNAs have conferred their critical role in key biological processes in human cancer including tumor initiation, proliferation, cell cycle, apoptosis, necroptosis, autophagy, and metastasis. The interwoven function of tumor-suppressor protein p53-linked lncRNAs in the ovarian cancer paradigm is of paramount importance. Several lncRNAs operate as p53 regulators or effectors and modulates a diverse array of functions either by participating in various signaling cascades or via interaction with different proteins. This review highlights the recent progress made in the identification of p53 associated lncRNAs while elucidating their molecular mechanisms behind the altered expression in ovarian cancer tumorigenesis. Moreover, the development of novel clinical and therapeutic strategies for targeting lncRNAs in human cancers harbors great promise.


Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 168-182 ◽  
Author(s):  
Robert R. Martin ◽  
Stuart MacFarlane ◽  
Sead Sabanadzovic ◽  
Diego Quito ◽  
Bindu Poudel ◽  
...  

Blackberry and raspberry are members of the family Rosaceae. They are classified in the genus Rubus, which comprises hundreds of species and has a center of origin in the Far East. Rubus is divided into 15 subgenera with blackberries classified in the Rubus (formerly Eubatus) and raspberries in the Idaeobatus subgenera. Rubus species are propagated vegetatively and are subject to infection by viruses during development, propagation, and fruit production stages. Reports of initial detection and symptoms of more than 30 viruses, virus-like diseases, and phytoplasmas affecting Rubus spp. were reviewed more than 20 years ago. Since the last review on Rubus viruses, significant progress has been made in the molecular characterization of many of the viruses that infect Rubus spp. Currently, reverse transcription–polymerase chain reaction detection methods are available for most of the viruses known to infect Rubus. The goals of this article are to update the knowledge on previously characterized viruses of Rubus, highlight recently described viruses, review the virus-induced symptoms, describe the advances made in their detection, and discuss our knowledge about several virus complexes that cause serious diseases in Rubus. Virus complexes have been identified recently as the major cause of diseases in blackberries and raspberries.


2021 ◽  
Vol 27 ◽  
Author(s):  
Wen Xu ◽  
Bei Wang ◽  
Yuxuan Cai ◽  
Jinlan Chen ◽  
Xing Lv ◽  
...  

Background: Long non-coding RNAs (lncRNA) have been identified as novel molecular regulators in cancers. LncRNA ADAMTS9-AS2 can mediate the occurrence and development of cancer through various ways such as regulating miRNAs, activating the classical signaling pathways in cancer, and so on, which have been studied by many scholars. In this review, we summarize the molecular mechanisms of ADAMTS9-AS2 in different human cancers. Methods: Through a systematic search of PubMed, lncRNA ADAMTS9-AS2 mediated molecular mechanisms in cancer are summarized inductively. Results: ADAMTS9-AS2 aberrantly expression in different cancers is closely related to cancer proliferation, invasion, migration, inhibition of apoptosis. The involvement of ADAMTS9-AS2 in DNA methylation, mediating PI3K / Akt / mTOR signaling pathways, regulating miRNAs and proteins, and such shows its significant potential as a therapeutic cancer target. Conclusion: LncRNA ADAMTS9-AS2 can become a promising biomolecular marker and a therapeutic target for human cancer.


Oncogene ◽  
2018 ◽  
Vol 38 (5) ◽  
pp. 765-766
Author(s):  
A. Lujambio ◽  
A. Portela ◽  
J. Liz ◽  
S. A. Melo ◽  
S. Rossi ◽  
...  

Biomeditsina ◽  
2019 ◽  
pp. 67-81
Author(s):  
O. I. Kit ◽  
A. Yu. Maksimov ◽  
T. P. Protasova ◽  
A. S. Goncharova ◽  
D. S. Kutilin ◽  
...  

Research laboratories in various countries are constantly endeavouring to improve the existing and to create new biological objects to simulate various human diseases. Immunodefi cient mice with transplanted human functional cells and tissues, as well as transgenic animals with the relevant human genes integrated in their genome — i. e. humanized mice — are increasingly used as test systems in biomedical studies. Humanized mouse models are constantly being improved to fi nd application in studies investigating human biological reactions and identifying the pathogenetic mechanisms behind a wide range of diseases, or as preclinical tools for medicine testing. In particular, such animals play an increasingly important role both in studies of human-specifi c infectious agents, cancer biology research and in the development of new antitumour agents. In addition, humanized mice are increasingly used as translational models in many areas of clinical research, including transplantology, immunology and oncology. Ultimately, the use of humanized animals can lead to the introduction of a truly personalized medicine into clinical practice. In this review, we discuss modern advances in the creation and use of humanized mice, emphasizing their usefulness for the pathogenesis study, as well as the development of new methods for human cancer treatment.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Mei Tao ◽  
Ming Zheng ◽  
Yanhua Xu ◽  
Shuo Ma ◽  
Weiwei Zhang ◽  
...  

AbstractCircular RNAs (circRNAs), a novel type of non-coding RNAs (ncRNAs), have a covalently closed circular structure resulting from pre-mRNA back splicing via spliceosome and ribozymes. They can be classified differently in accordance with different criteria. As circRNAs are abundant, conserved, and stable, they can be used as diagnostic markers in various diseases and targets to develop new therapies. There are various functions of circRNAs, including sponge for miR/proteins, role of scaffolds, templates for translation, and regulators of mRNA translation and stability. Without m7G cap and poly-A tail, circRNAs can still be degraded in several ways, including RNase L, Ago-dependent, and Ago-independent degradation. Increasing evidence indicates that circRNAs can be modified by N-6 methylation (m6A) in many aspects such as biogenesis, nuclear export, translation, and degradation. In addition, they have been proved to play a regulatory role in the progression of various cancers. Recently, methods of detecting circRNAs with high sensitivity and specificity have also been reported. This review presents a detailed overview of circRNAs regarding biogenesis, biomarker, functions, degradation, and dynamic modification as well as their regulatory roles in various cancers. It’s particularly summarized in detail in the biogenesis of circRNAs, regulation of circRNAs by m6A modification and mechanisms by which circRNAs affect tumor progression respectively. Moreover, existing circRNA detection methods and their characteristics are also mentioned.


Sign in / Sign up

Export Citation Format

Share Document