scholarly journals A Novel off-the-Shelf Trastuzumab-Armed NK Cell Therapy (ACE1702) Using Antibody-Cell-Conjugation Technology

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2724
Author(s):  
Hao-Kang Li ◽  
Ching-Wen Hsiao ◽  
Sen-Han Yang ◽  
Hsiu-Ping Yang ◽  
Tai-Sheng Wu ◽  
...  

Natural killer (NK) cells harbor efficient cytotoxicity against tumor cells without causing life-threatening cytokine release syndrome (CRS) or graft-versus-host disease (GvHD). When compared to chimeric antigen receptor (CAR) technology, Antibody-Cell Conjugation (ACC) technology has been developed to provide an efficient platform to arm immune cells with cancer-targeting antibodies to recognize and attack cancer cells. Recently, we established an endogenous CD16-expressing oNK cell line (oNK) with a favorable expression pattern of NK activation/inhibitory receptors. In this study, we applied ACC platform to conjugate oNK with trastuzumab and an anti-human epidermal growth factor receptor 2 (HER2) antibody. Trastuzumab-conjugated oNK, ACE-oNK-HER2, executed in vitro and in vivo cytotoxicity against HER2-expressing cancer cells and showed enhanced T cell-recruiting capability and secretion of IFNγ. The irradiated and cryopreserved ACE-oNK-HER2, designated as ACE1702, retained superior HER2-specific in vitro and in vivo potency with no tumorigenic potential. In conclusion, this study provides the evidence to support the potential clinical application of ACE1702 as a novel off-the-shelf NK cell therapy against HER2-expressing solid tumors.

2020 ◽  
Vol 21 (7) ◽  
pp. 2263 ◽  
Author(s):  
Farzaneh Sharifzad ◽  
Soura Mardpour ◽  
Saeid Mardpour ◽  
Esmaeil Fakharian ◽  
Adeleh Taghikhani ◽  
...  

Natural killer (NK) cell therapy is one of the most promising treatments for Glioblastoma Multiforme (GBM). However, this emerging technology is limited by the availability of sufficient numbers of fully functional cells. Here, we investigated the efficacy of NK cells that were expanded and treated by interleukin-2 (IL-2) and heat shock protein 70 (HSP70), both in vitro and in vivo. Proliferation and cytotoxicity assays were used to assess the functionality of NK cells in vitro, after which treated and naïve NK cells were administrated intracranially and systemically to compare the potential antitumor activities in our in vivo rat GBM models. In vitro assays provided strong evidence of NK cell efficacy against C6 tumor cells. In vivo tracking of NK cells showed efficient homing around and within the tumor site. Furthermore, significant amelioration of the tumor in rats treated with HSP70/Il-2-treated NK cells as compared to those subjected to nontreated NK cells, as confirmed by MRI, proved the efficacy of adoptive NK cell therapy. Moreover, results obtained with systemic injection confirmed migration of activated NK cells over the blood brain barrier and subsequent targeting of GBM tumor cells. Our data suggest that administration of HSP70/Il-2-treated NK cells may be a promising therapeutic approach to be considered in the treatment of GBM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3905-3905
Author(s):  
Rebecca Lopez ◽  
Andreas Lundqvist ◽  
Stephanie Sellers ◽  
Maria Berg ◽  
Muthalagu Ramanathan ◽  
...  

Abstract NK cell based immunotherapy represents a promising treatment approach for patients with cancer. Although preliminary clinical trials in humans suggest NK cell infusions can mediate anti-tumor effects, animal models are needed to provide insight into methods to enhance both the function and in vivo longevity of adoptively infused NK cells. Research conducted in our laboratory has shown that ex vivo expanded human NK cells are highly activated, up-regulating NKG2D, Granzyme B, TRAIL and Fas-ligand expression making them much more cytotoxic to tumor cells compared to freshly isolated NK cells. However, important questions remain regarding whether in vitro expansion alters the capacity of these cells to replicate, and traffic to tissues in vivo following their adoptive infusion into recipients. Differences in the genotype and phenotype of mouse NK cells compared to human NK cells limit the value of murine animal models to address these questions. In contrast to mice, Rhesus macaques have orthologues to most of the human MHC class I and II genes and possess NK cells expressing KIRs that are phenotypically and functionally similar to human NK cells, thus providing an excellent model system for evaluating questions related to adoptive NK cell therapy. We developed an in vitro method to expand macaque NK cells to characterize their in vivo longevity and tissue trafficking following adoptive infusion. Macaque NK cells were enriched from peripheral blood mononuclear cells by depleting CD3+ cells using immunomagnetic beads and were then expanded in vitro with autologous plasma and a human EBV-LCL feeder cell line using culture conditions identical to those used to expand NK cells from humans. NK cell cultures expanded 50- to 100-fold over 7 to 20 days, were greater than 99% CD3 negative, and had a similar phenotype to human NK cells including a large proportion of CD16/CD56 double positive cells, and ubiquitous expression of NKG2D, KIR2D, LFA-1, granzyme B, and CXCR3. In contrast to mice but analogous to human NK cells, macaque expanded NK cells upregulated surface expression of TRAIL and were highly cytotoxic to K562 cells and other human tumor lines (Figure). CFSE labelling of expanded NK cells did not alter their phenotype or tumor cytotoxic function. Data characterizing the longevity, proliferative capacity, and tissue trafficking patterns in the blood, bone marrow and lymph node of in vitro expanded and adoptively infused CFSE labeled NK cells (up to 1 × 108 NK Cells/kg i.v.) in macaque recipients will be presented from this analysis. Figure Figure


Author(s):  
Farzaneh Sharifzad ◽  
Soura Mardpour ◽  
Saeid Mardpour ◽  
Esmaeil Fakharian ◽  
Adeleh Taghikhani ◽  
...  

Natural killer (NK) cell therapy is one of the most promising treatments for Glioblastoma Multiforme (GBM). However, this emerging technology is limited by the availability of sufficient numbers of fully functional cells. Here, we investigated the efficacy of NK cells that were expanded and treated by interleukin-2 (IL-2) and heat shock protein70 (HSP70), both in vitro and in vivo. Proliferation and cytotoxicity assays were used to assess the functionality of NK cells in vitro, after which treated and naïve NK cells were administrated intra-cranially and systemically to compare the potential antitumor activities in our in vivo rat GBM models. In vitro assays provided strong evidence of NK cell efficacy against C6 tumor cells. In vivo tracking of NK cells showed efficient homing around and within the tumor site. Furthermore, significant amelioration of the tumor in rats treated with HSP70/Il-2 treated NK cells as compared to those subjected to non-treated NK cells, as confirmed by MRI, proved the efficacy of adoptive NK cell therapy. Moreover, results obtained with systemic injection confirmed migration of activated NK cells over the blood brain barrier and subsequent targeting of GBM tumor cells. Our data suggest that administration of HSP70/Il-2 treated NK cells may be a promising therapeutic approach to be considered in the treatment of GBM.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A834-A834
Author(s):  
Xue Yao ◽  
Sandro Matosevic

BackgroundThe effectiveness of natural killer (NK) cell-based immunotherapy against solid tumors is limited by the lack of specific antigens and the immunosuppressive tumor microenvironment (TME). Glioblastoma multiforme (GBM) is one such heavily immunosuppressive tumor that has been particularly hard to target and remains without a viable treatment. The development of novel approaches to enhance the efficacy of NK cells against GBM is urgently needed. NK cell engagers (NKCE) have been developed to enhance the efficacy of NK cell therapy.MethodsTo improve the clinical efficacy of NK cell therapy, we are developing a new generation of multi-specific killer engagers, which consists of a neoantigen-targeting moiety, together with cytokine and chemokine-producing domains. Neoantigens are new antigens formed specifically in tumor cells due to genome mutations, making them highly specific tools to target tumor cells. Our engager has been designed to target Wilms' tumor-1 (WT-1), a highly specific antigen overexpressed in GBM among other solid tumors. This is done through the generation of an scFv specific targeting the complex of WT-1126-134/HLA-A*02:01 on the surface of GBM. On the NK cell side, the engager is designed to target the activating receptor NKp46. Incorporation of the cytokine IL-15 within the engager supports the maturation, persistence, and expansion of NK cells in vivo while favoring their proliferation and survival in the tumor microenvironment. Additionally, our data indicated that the chemokine CXCL10 plays an important role in the infiltration of NK cells into GBM, however, GBM tumors produce low levels of this chemokine. Incorporation of a CXCL10-producing function into our engager supports intratumoral NK cell trafficking by promoting, through their synthetic production, increased levels of CXCL10 locally in the tumor microenvironment.ResultsCollectively, this has resulted in a novel multifunctional NK cell engager, combining neoantigen-cytokine-chemokine elements fused to an activating domain-specific to NK cells, and we have investigated its ability to support and enhance NK cell-mediated cytotoxicity against solid tumors in vitro and in vivo against patient-derived GBM models. The multi-specific engager shows both high tumor specificity, as well as the ability to overcome NK cell dysfunction encountered in the GBM TME.ConclusionsWe hypothesize that taking advantage of our multi-functional engager, NK cells will exhibit superior ex vivo expansion, infiltration, and antitumor activity in the treatment of GBM and other solid tumors.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3607-3607
Author(s):  
Grace Lee ◽  
Sheela Karunanithi ◽  
Zachary Jackson ◽  
David Wald

NK cells are a subset of lymphocytes that directly recognize and lyse tumor cells without the limitation of antigen specific receptor recognition. In addition to behaving as cytotoxic effector cells, NK cells unlike T cells are not thought to elicit graft versus host disease. The combination of these characteristics makes NK cells a powerful tool for adoptive cell therapy. Despite the promise of NK cell therapy, key hurdles in achieving significant clinical efficacy include both generating sufficient numbers of highly tumoricidal NK cells and maintaining the cytotoxic activity of these cells in vivo despite the immunosuppressive tumor microenvironment. Our lab and others have developed several feeder cell line-based expansion modules that robustly stimulate the ex vivo proliferation of NK cells. However, strategies to enhance and sustain the activity of NK cells once administered in vivo are still limited. In order to identify strategies to enhance the cytotoxic activity of NK cells, we developed a high-throughput small molecule screen (Figure 1A) that involved a calcein-based cytotoxicity assay of ex vivo expanded and treated NK cells against ovarian cancer cells (OVCAR-3). 20,000 compounds were screened and the screen was found to be highly robust (Z'>0.59). We identified 29 hits that led to at least a 25% increase in cytotoxicity as compared to DMSO control-treated NK cells. One of the most promising hits was the pan-ROCK inhibitor, Y-27632 that led to an 30% increase in NK killing of the OVCAR-3 cells. We validated that ROCK inhibition leads to enhanced NK cell cytotoxic activity using Y-27632 (Figure 1B) as well as other well-established ROCK inhibitors such as Fasudil using a flow cytometry based killing assay. Y-27632 increased NK cell cytotoxicity in a dose- and time- dependent manner. ROCK inhibition consistently led to ~10-25% increase in NK cell cytotoxic activity directed against a variety of ovarian (Figure 1C) and other solid tumor cell lines (Figure 1D). Interestingly, we found that the NK hyperactivation persists for up to 48hrs after washing off the drug that may enable ex vivo stimulation before NK cell infusion. Our preliminary results showed that ROCK inhibition activates PI3K-dependent Akt activation (Figure 1E). We hypothesize that ROCK inhibition restores Akt activation which may be critical for NK cell activating receptor pathways and our current investigations will test these hypotheses. ROCK inhibitors, such as Y-27632 and Fasudil have been utilized in both preclinical and clinical studies for a variety of diseases such as atherosclerosis, neurodegenerative disorders, and ocular diseases. However, the consequences of ROCK inhibition in NK cells has not been thoroughly investigated. Our work shows a promising novel strategy to significantly enhance NK cell therapy against cancer that has high translational potential. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii194-ii195
Author(s):  
Nazanin Majd ◽  
Maha Rizk ◽  
Solveig Ericson ◽  
Kris Grzegorzewski ◽  
Sharmila Koppisetti ◽  
...  

Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor with dismal prognosis. Recent advances of immunotherapy in cancer have sparked interest in the use of cell therapy for treatment of GBM. Active transfer of Natural Killer (NK) cells is of particular interest in GBM because NK cells are capable of exerting anti-tumor cytotoxicity without the need for antigen presentation and sensitization, processes that are impaired in GBM. CYNK-001 is an allogeneic, off-the-shelf product enriched for CD56+/CD3- NK cells expanded from placental CD34+ cells manufactured by Celularity. Here, we demonstrate in vitro cytotoxicity of CYNK-001 against several GBM lines and its in vivo anti-tumor activity in a U87MG orthotopic mouse model via intracranial administration resulting in 94.5% maximum reduction in tumor volume. We have developed a phase I window-of-opportunity trial of CYNK-001 in recurrent GBM via intravenous (IV) and intratumoral (IT) routes. In the IV cohort, subjects receive cyclophosphamide for lymphodepletion followed by 3-doses of IV CYNK-001 weekly. In the IT cohort, subjects undergo placement of an IT catheter with an ommaya reservoir followed by 3-doses of IT CYNK-001 weekly. Patients are monitored for 28-days after last infusion for toxicity. Once maximum safe dose (MSD) is determined, patients undergo IV or IT treatments at MSD followed by surgical resection and the tumor tissue will be analyzed for NK cell engraftment and persistence. We will utilize a 3 + 3 dose de-escalation design (maximum n=36). Primary endpoint is safety and feasibility. Secondary endpoints are overall response rate, duration of response, time to progression, progression free survival and overall survival. Main eligibility criteria include age ≥18, KPS ≥60, GBM at first or second relapse with a measurable lesion on ≤2mg dexamethasone. This is the first clinical trial to investigate CYNK-001 in GBM and will lay the foundation for future NK cell therapy in solid tumors.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1550 ◽  
Author(s):  
Tomomi Sanomachi ◽  
Shuhei Suzuki ◽  
Keita Togashi ◽  
Asuka Sugai ◽  
Shizuka Seino ◽  
...  

Spironolactone, a classical diuretic drug, is used to treat tumor-associated complications in cancer patients. Spironolactone was recently reported to exert anti-cancer effects by suppressing DNA damage repair. However, it currently remains unclear whether spironolactone exerts combinational effects with non-DNA-damaging anti-cancer drugs, such as gemcitabine and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Using the cancer cells of lung cancer, pancreatic cancer, and glioblastoma, the combinational effects of spironolactone with gemcitabine and osimertinib, a third-generation EGFR-TKI, were examined in vitro with cell viability assays. To elucidate the underlying mechanisms, we investigated alterations induced in survivin, an anti-apoptotic protein, by spironolactone as well as the chemosensitization effects of the suppression of survivin by YM155, an inhibitor of survivin, and siRNA. We also examined the combinational effects in a mouse xenograft model. The results obtained revealed that spironolactone augmented cell death and the suppression of cell growth by gemcitabine and osimertinib. Spironolactone also reduced the expression of survivin in these cells, and the pharmacological and genetic suppression of survivin sensitized cells to gemcitabine and osimertinib. This combination also significantly suppressed tumor growth without apparent adverse effects in vivo. In conclusion, spironolactone is a safe candidate drug that exerts anti-cancer effects in combination with non-DNA-damaging drugs, such as gemcitabine and osimertinib, most likely through the suppression of survivin.


2019 ◽  
Vol 116 (21) ◽  
pp. 10441-10446 ◽  
Author(s):  
Xiao Han ◽  
Mengning Wang ◽  
Songwei Duan ◽  
Paul J. Franco ◽  
Jennifer Hyoje-Ryu Kenty ◽  
...  

Polymorphic HLAs form the primary immune barrier to cell therapy. In addition, innate immune surveillance impacts cell engraftment, yet a strategy to control both, adaptive and innate immunity, is lacking. Here we employed multiplex genome editing to specifically ablate the expression of the highly polymorphic HLA-A/-B/-C and HLA class II in human pluripotent stem cells. Furthermore, to prevent innate immune rejection and further suppress adaptive immune responses, we expressed the immunomodulatory factors PD-L1, HLA-G, and the macrophage “don’t-eat me” signal CD47 from the AAVS1 safe harbor locus. Utilizing in vitro and in vivo immunoassays, we found that T cell responses were blunted. Moreover, NK cell killing and macrophage engulfment of our engineered cells were minimal. Our results describe an approach that effectively targets adaptive as well as innate immune responses and may therefore enable cell therapy on a broader scale.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2659 ◽  
Author(s):  
Daniel A. Vallera ◽  
Soldano Ferrone ◽  
Behiye Kodal ◽  
Peter Hinderlie ◽  
Laura Bendzick ◽  
...  

We improved the bispecific antibody platform that primarily engages natural killer (NK) cells to kill cancer cells through antibody-dependent cellular cytotoxicity (ADCC) by adding IL-15 as a crosslinker that expands and self-sustains the effector NK cell population. The overall goal was to target B7-H3, an established marker predominantly expressed on cancer cells and minimally expressed on normal cells, and prove that it could target cancer cells in vitro and inhibit tumor growth in vivo. The tri-specific killer engager (TriKETM) was assembled by DNA shuffling and ligation using DNA encoding a camelid anti-CD16 antibody fragment, a wild-type IL-15 moiety, and an anti-B7-H3 scFv (clone 376.96). The expressed and purified cam1615B7H3 protein was tested for in vitro NK cell activity against a variety of tumors and in vivo against a tagged human MA-148 ovarian cancer cell line grafted in NSG mice. cam1615B7H3 showed specific NK cell expansion, high killing activity across a range of B7-H3+ carcinomas, and the ability to mediate growth inhibition of aggressive ovarian cancer in vivo. cam1615B7H3 TriKE improves NK cell function, expansion, targeted cytotoxicity against various types of B7-H3-positive human cancer cell lines, and delivers an anti-cancer effect in vivo in a solid tumor setting.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769431 ◽  
Author(s):  
Ying Hu ◽  
Zihan Sun ◽  
Jinmu Deng ◽  
Baoquan Hu ◽  
Wenting Yan ◽  
...  

Increasing evidence has indicated that the splicing factor hnRNPA2B1 plays a direct role in cancer development, progression, gene expression, and signal transduction. Previous studies have shown that knocking down hnRNPA2B1 in breast cancer cells induces apoptosis, but the mechanism and other functions of hnRNPA2B1 in breast cancer are unknown. The goal of this study was to investigate the biological function, clinical significance, and mechanism of hnRNPA2B1 in breast cancer. The expression of hnRNPA2B1 in 92 breast cancer and adjacent normal tissue pairs was analyzed by immunohistochemical staining. Stable clones exhibiting knockdown of hnRNPA2B1 via small hairpin RNA expression were generated using RNA interference technology in breast cancer cell lines. The effects of hnRNPA2B1 on cell proliferation were examined by MTT and EdU assay, and cellular apoptosis and the cell cycle were examined by flow cytometry. A nude mouse xenograft model was established to elucidate the function of hnRNPA2B1 in tumorigenesis in vivo. The role of hnRNPA2B1 in signaling pathways was investigated in vitro. Our data revealed that hnRNPA2B1 was overexpressed in breast cancer tissue specimens and cell lines. Knockdown of hnRNPA2B1 reduced breast cancer cell proliferation, induced apoptosis, and prolonged the S phase of the cell cycle in vitro. In addition, hnRNPA2B1 knockdown suppressed subcutaneous tumorigenicity in vivo. On a molecular level, hnRNPA2B1 knockdown decreased signal transducer and activator of transcription 3 and extracellular-signal-regulated kinase 1/2 phosphorylation. We concluded that hnRNPA2B1 promotes the tumorigenic potential of breast cancer cells, MCF-7 and MDA-MB-231, through the extracellular-signal-regulated kinase 1/2 or signal transducer and activator of transcription 3 pathway, which may serve as a target for future therapies.


Sign in / Sign up

Export Citation Format

Share Document