scholarly journals Photocatalytic and Antibacterial Potency of Titanium Dioxide Nanoparticles: A Cost-Effective and Environmentally Friendly Media for Treatment of Air and Wastewater

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 709
Author(s):  
Zohaib Razzaq ◽  
Awais Khalid ◽  
Pervaiz Ahmad ◽  
Muhammad Farooq ◽  
Mayeen Uddin Khandaker ◽  
...  

Titanium dioxide nanoparticles (TiO2-NPs) were synthesized via a facile hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR), and Raman spectroscopy were used to study the structure, morphology, chemical composition, and functional group attached to the as-synthesized TiO2-NPs. These NPs were then used to test their efficacy against various microbes and their potency as effective catalysts. TiO2-NPs are found to have the maximum antibacterial activity against Gram-negative bacterial strains rather than Gram-positive bacteria. The photocatalytic activity of the TiO2-NPs was investigated for the photodegradation of 10 ppm bromophenol blue (BPB) dye by using 0.01 g–0.05 g of catalyst. TiO2-NPs exhibited the removal of 95% BPB, respectively, within 180 min. The TiO2-NPs’ antibacterial and catalytic properties suggest that these may be used in environmental remediation as a cost-effective and environmentally friendly wastewater and air treatment material.

2011 ◽  
Vol 76 (11) ◽  
pp. 1335-1346 ◽  
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A series of copper-modified titanium dioxide (Cu/TiO2) nanoparticles were synthesized via one-step sol-gel method. The crystal structure and chemical properties were characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Cu/TiO2nanoparticles were applied to CO2photoconversion and the yield of formaldehyde was used to evaluate the photocatalytic performance. The optimum amount of copper modifying was 0.6 wt.% and the yield of formaldehyde was 946 μmol/gcatunder UV illumination for 6 h. 20 wt.% Cu/TiO2also performed a high photocatalytic activity, which yielded 433 μmol/gcatformaldehyde under UV illumination for 6 h.


2021 ◽  
Vol 12 (3) ◽  
pp. 3372-3389

Plant-mediated synthesis of nanomaterials has been increasingly practiced day by day due to its eco-friendly nature, simple method without using any hazardous chemicals and solvent. In the present study, we synthesized Titanium dioxide nanomaterials (TiO2 NPs) using sunflower leaves extract. The synthesized TiO2 NPs was confirmed by ultraviolet-visible (UV-Vis) spectroscopy, while morphology and size of the NPs were identified by Scanning Electron Microscopy (SEM); elemental composition of materials analyzed by using Energy Dispersive X-ray (EDAX) analysis, and functional groups in plant extract identified by using Fourier Transform Infrared Spectroscopy (FTIR) analysis responsible for reducing and stabilizing of NPs, crystalline nature of NPs identification by using X-ray diffraction analysis (XRD), colloidal solution stability, the thermal stability of NPs noticed by dynamic light scattering (DLS) and thermo-gravimetric analyses. The synthesized green catalyst TiO2 NPs mediated novel Phenenthro [9,10-d imidazole derivatives(9a-e) have been successfully synthesized with good yields by reacting to 3-methyl-5-phenoxy-1-phenyl-1H-pyrazole-4-carbaldehydes with 9,10-phenanthrene quinone and ammonium acetate. The structures of the synthesized molecules were characterized by NMRspectroscopy. The fluorescence property of the synthesized molecules (9a-e) in acetonitrile solvent was studied, and all the compounds showed good emission intensity. An in-silico molecular docking was performed on the synthesized molecules (9a-e) using aldose reductase as a target protein. Overall, studies indicate that compounds (9a-e)are promising in developing novel anti-diabetic drugs in the future. The synthesized molecules (9a-e) were further screened for antioxidant activity by DPPH radical scavenging method.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 400
Author(s):  
Angelo Nicosia ◽  
Fabiana Vento ◽  
Gisella Maria Di Mari ◽  
Luisa D’Urso ◽  
Placido G. Mineo

Photocatalytic remediation represents a potential sustainable solution to the abatement of xenobiotic pollutants released within the water environment. Aeroxide® P25 titanium dioxide nanoparticles (TiO2 NPs) are well-known as one of the most efficient photocatalysts in several applications, and have also been investigated in water remediation as suspended powder. Recently, their application in the form of thin films has been revealed as a potential alternative to avoid time-consuming filtration processes. Polymers represent suitable substrates to immobilize TiO2 NPs, allowing further production of thin films that can be exploited as a photoactive coating for environmental remediation. Nevertheless, the methods adopted to immobilize TiO2 NPs on polymer matrix involve time-consuming procedures and the use of several reactants. Here, titanium dioxide-based nanocomposites (NCx) were obtained through a new approach based on Methyl Methacrylate in situ bulk polymerization and were compared with a blended mixture (BL). Their morphology and chemical–physical properties were investigated through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), UV–Vis, and Raman spectroscopies. It was revealed that the in situ approach deeply influences the chemical–physical interactions between the polymer matrix and TiO2 NPs. Photocatalytic experiments revealed the boosted photodegradation activity of NCx thin films, induced by the in situ approach. The photodegradation of paraquat and acetaminophen was also ascertained.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


Nanoscale ◽  
2020 ◽  
Author(s):  
Yanjun Gao ◽  
Tingyu Li ◽  
Shuming Duan ◽  
Lizhi Lv ◽  
Yuan Li ◽  
...  

Titanium dioxide nanoparticles (TiO2-NPs) is widely applicated as additives in foods for its excellent whitening and brightening capability. Although the toxicity and antibacterial activity of TiO2-NPs has been extensively studied,...


2021 ◽  
Vol 33 (4) ◽  
pp. 1265-1275
Author(s):  
Matthias H. Richter ◽  
Wen-Hui Cheng ◽  
Ethan J. Crumlin ◽  
Walter S. Drisdell ◽  
Harry A. Atwater ◽  
...  

Author(s):  
I-Hsuan Chen ◽  
Jung-Hsien Chang ◽  
Ren-Jie Xie ◽  
Chia-Hui Tseng ◽  
Sheng-Rong Hsieh ◽  
...  

Abstract In this study, the easy-to-operate silver mirror reaction (SMR) was used for metallizing chromatography paper. The SMR-metallized paper was characterized by water contact angle measurements, a surface profiler, X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction, and electrical resistance measurement. The characterization results show that Ag was successfully synthesized on cellulose fibers and was electrically conductive after cyclic bending. Moreover, this SMR-metallized paper was used as electrodes for fabricating a supercapacitor. This SMR-metallized paper could be used for realizing cost-effective flexible electronics applied in on-site biochemical sensing in resource-limited settings.


Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


2019 ◽  
Vol 6 (10) ◽  
pp. 191077 ◽  
Author(s):  
Zhencui Wang ◽  
Yuechao Song ◽  
Xingfei Cai ◽  
Jun Zhang ◽  
Tianle Tang ◽  
...  

Further applications of photocatalysis were limited by the high recombination probability of photo-induced electron–hole pairs in traditional titanium dioxide nanoparticles (TiO 2 NPs). Herein, we modified them with rare earth metal via a facile sol–gel method, using tetrabutyl titanate as a precursor and terbium (III) nitrate hexahydrate as terbium (Tb) source. The resulting samples with different Tb doping amounts (from 0 to 2%) have been characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photo-electron spectroscopy and a scanning electron microscope. The photocatalytic performance of Tb-doped TiO 2 was evaluated by the degradation of methylene blue. The effects of Tb doping amount and initial pH value of solution were investigated in detail. The composite with Tb doping amount of 1.0 wt% showed the highest photocatalytic performance. It exhibited approximately three times enhancement in photocatalytic activity with a reaction rate constant of 0.2314 h −1 when compared with that of commercial P25 (0.0827 h −1 ). In addition, it presented low toxicity on zebrafishes with 96 h-LC 50 of 23.2 mg l −1 , and has been proved to be reusable for at least four cycles without significant loss of photocatalytic activity. A probable photocatalytic mechanism of Tb-doped TiO 2 was proposed according to the active species trapping experiments. The high photocatalytic performance, excellent reusability and low toxicity of Tb-doped TiO 2 indicated that it is a promising candidate material in the future treatment of dye wastewater.


Sign in / Sign up

Export Citation Format

Share Document