scholarly journals Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2913
Author(s):  
Reinier Alvarez ◽  
Debjani Mandal ◽  
Prashant Chittiboina

PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2, 6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.

2021 ◽  
Vol 11 ◽  
Author(s):  
Frederic A. Vallejo ◽  
Steven Vanni ◽  
Regina M. Graham

Glioblastoma (GBM) remains one of the most lethal primary brain tumors in both adult and pediatric patients. Targeting tumor metabolism has emerged as a promising-targeted therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs). Neoplastic cells, especially those with high proliferative potential such as GSCs, have been shown to upregulate UCP2 as a cytoprotective mechanism in response to chronic increased reactive oxygen species (ROS) exposure. This upregulation plays a central role in the induction of the highly glycolytic phenotype associated with many tumors. In addition to shifting metabolism away from oxidative phosphorylation, UCP2 has also been implicated in increased mitochondrial Ca2+ sequestration, apoptotic evasion, dampened immune response, and chemotherapeutic resistance. A query of the CGGA RNA-seq and the TCGA GBMLGG database demonstrated that UCP2 expression increases with increased WHO tumor-grade and is associated with much poorer prognosis across a cohort of brain tumors. UCP2 expression could potentially serve as a biomarker to stratify patients for adjunctive anti-tumor metabolic therapies, such as glycolytic inhibition alongside current standard of care, particularly in adult and pediatric gliomas. Additionally, because UCP2 correlates with tumor grade, monitoring serum protein levels in the future may allow clinicians a relatively minimally invasive marker to correlate with disease progression. Further investigation of UCP2’s role in metabolic reprogramming is warranted to fully appreciate its clinical translatability and utility.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii180-ii180
Author(s):  
Jerome Graber ◽  
Kaite Sofie ◽  
Lynne Taylor

Abstract Since 2009, Washington State has had a “Death with Dignity” (DWD) process whereby people with a terminal illness may legally obtain a prescription for medications that will end their life. Patients initiate a voluntary request from two physicians certifying they have a prognosis < 6 months, are aware of other palliative care options, and have capacity without the comorbidity of a psychiatric diagnosis. Since 2015, over 200 people annually have used the DWD process in Washington. Other papers have described the characteristics of people using DWD with a diagnosis of cancer or amyotrophic lateral sclerosis (ALS) but none have specifically looked at patients with brain tumors (BT) who used DWD. We describe 20 people with BT who accessed DWD since 2015 at our center. Median age at the time of death was 51 (range 38-79) and 75% were men. Glioblastoma was the diagnosis in 10 (50%), anaplastic glioma in 8 (40%), grade II astrocytoma in 1, and a presumed high-grade glioma by imaging in 1. Median Karnofsky Performance Status (KPS) was 90 at diagnosis (range 50-100) and 70 at DWD request (range 40-90). Standard radiation (RT) and chemotherapy was used by 17 (85%) prior to DWD request, while 3 patients (15%, ages 70-79, KPS 50-90) requested DWD immediately after diagnosis and did not undergo further treatment. Pain was present in 4 patients (20%), 2 using opioids (10%). Six patients (30%) continued tumor treatments after approval for DWD. Median OS was 22 months (range 2-285) and 24 months excluding patients who declined treatment (range 8-285). Most glioma patients in our cohort requested DWD after undergoing chemoradiation, pain was uncommon and rarely severe, and survival from diagnosis was comparable to standard therapy. As access to medical assistance in dying continues, further research is needed on its utilization for people with brain tumors.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 216
Author(s):  
Mio Harachi ◽  
Kenta Masui ◽  
Webster K. Cavenee ◽  
Paul S. Mischel ◽  
Noriyuki Shibata

Metabolic reprogramming is an emerging hallmark of cancer and is driven by abnormalities of oncogenes and tumor suppressors. Accelerated metabolism causes cancer cell aggression through the dysregulation of rate-limiting metabolic enzymes as well as by facilitating the production of intermediary metabolites. However, the mechanisms by which a shift in the metabolic landscape reshapes the intracellular signaling to promote the survival of cancer cells remain to be clarified. Recent high-resolution mass spectrometry-based proteomic analyses have spotlighted that, unexpectedly, lysine residues of numerous cytosolic as well as nuclear proteins are acetylated and that this modification modulates protein activity, sublocalization and stability, with profound impact on cellular function. More importantly, cancer cells exploit acetylation as a post-translational protein for microenvironmental adaptation, nominating it as a means for dynamic modulation of the phenotypes of cancer cells at the interface between genetics and environments. The objectives of this review were to describe the functional implications of protein lysine acetylation in cancer biology by examining recent evidence that implicates oncogenic signaling as a strong driver of protein acetylation, which might be exploitable for novel therapeutic strategies against cancer.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi4-vi5
Author(s):  
Geoffroy Andrieux ◽  
Tonmoy Das ◽  
Stuart Smith ◽  
Ruman Rahman ◽  
Sajib Chakraborty

Abstract Spatiotemporal heterogeneity of glioblastoma (GBM) originating from genomic and transcriptional variation in spatially distinct sites, may contribute to subtype switching in GBM prior to and upon recurrence. Fluorescence-guided neurosurgical resection utilizing 5-aminolevulinic acid (5ALA) has enabled the isolation of infiltrative margin tumor cells (5ALA+ cells) from a background of non-neoplastic cells. To falsify the hypothesis that the 5ALA+ subpopulation(s) is defined by a unique cellular state, we have explored the spatial-transcriptomic (ST) landscape to interrogate molecular signatures unique to infiltrating 5ALA+ cells in comparison to GBM core, rim, and invasive margin non-neoplastic cells. ST analysis reveals that GBM molecular subtype plasticity is not restricted to recurrence, but manifests regionally in a cell-type-specific manner. Whilst GBM core and rim are highly enriched with Classical and Proneural subtypes, 5ALA+ cells are uniquely enriched with the Mesenchymal subtype (MES). Upregulation of the wound response pathway in 5ALA+ cells implicate hijacking of the wound healing pathway of neural cells to promote tumor growth. Exon-intron split analysis revealed an upregulation of exonic counts for MES and wound-response genes in 5ALA+ cells, implying that these genes are under active post-transcriptional control. Network analysis suggests that wound response genes, including chemokine CCL2 that recruits regulatory T-cells and monocytic myeloid-derived suppressor cells, are controlled by an IRF8-mediated transcriptional program in 5ALA+ cells. A higher stemness signature both in 5ALA+ cells and non-neoplastic cells of the invasive margin emphasizes the role of this microenvironment in stemness acquisition and defines 5ALA+ cells as a rare sub-population of GBM stem cells. Finally, we establish a link between the unique molecular-signatures of 5ALA+ cells, and poor survival and GBM recurrence. Characterization of the 5ALA+ infiltrative sub-population offers an opportunity to develop more effective GBM treatments and urges focus away from the GBM proliferative core, upon which failed targeted therapies have been predicated.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi89-vi89
Author(s):  
Nayan Lamba ◽  
Bryan Iorgulescu

Abstract INTRODUCTION We utilized national registry data to evaluate the unique epidemiology of primary adolescent and young adult (AYA) brain tumors according to the WHO2016 classification. METHODS AYA patients (15≤age≤39) presenting between 2004-2017 with a brain tumor were identified by ICD-O-3 coding from the National Cancer Database (comprising >70% of newly-diagnosed cancers in the U.S.), and compared to pediatric and adult populations. Epidemiology and overall survival (estimated by Kaplan-Meier techniques and multivariable Cox regression) were assessed by WHO2016 tumor type. RESULTS 108,705 AYA brain tumor patients were identified (56.9% female), compared to 23,928 pediatric (46.8% female) and 748,272 adult (55.6% female) patients. Among the 69.4% of AYA brain tumors with pathological diagnosis, diffuse gliomas (31.4%), sellar tumors (19.2%), and meningiomas (15.3%) predominated in both sexes. Diffuse glioma (31.4%), sellar (19.2%), cranial nerve (7.3%), and mesenchymal non-meningothelial (4.1%) tumors represented a greater proportion of AYA brain tumors than in either pediatric or adult populations. A majority of all intracranial GCTs (59.2%) and neuronal & mixed neuronal-glial tumors (51.6%) presented during AYA. Although the prevalence of diffuse gliomas was similar between AYAs and adults, AYA gliomas were more likely to be grade 2-3 astrocytomas (38.9% vs 14.3%) and oligodendrogliomas (19.3% vs 4.3%) than in adults. GBMs represented 76.0% of adult diffuse gliomas vs. only 25.7% of AYA diffuse gliomas, but with a similar prevalence of MGMT promoter methylation (40.8% vs 38.4%). Notably, 50.7% of AYA PCNSLs were associated with HIV/AIDS, vs only 7.1% in adults (p< 0.001). CONCLUSIONS The distribution, epidemiology, and survival outcomes of primary brain tumors in the AYA population are distinct from their pediatric and adult counterparts. Notably, AYA infiltrative gliomas were more often of lower grade than adults and AYA PCNSL were far more likely to be associated with HIV/AIDS. Primary brain tumors in AYA patients require specialized management.


2020 ◽  
Author(s):  
Padma Kadiyala ◽  
Stephen V. Carney ◽  
Jessica C. Gauss ◽  
Maria B. Garcia-Fabiani ◽  
Felipe J. Núñez ◽  
...  

AbstractMutant isocitrate-dehydrogenase-1 (IDH1-R132H; mIDH1) is a hallmark of adult gliomas. Lower grade mIDH1 gliomas are classified into two molecular subgroups: (i) 1p/19q co-deletion/TERT-promoter mutations or (ii) inactivating mutations in α-thalassemia/mental retardation syndrome X-linked (ATRX) and TP53. This work, relates to the gliomas’ subtype harboring mIDH1, TP53 and ATRX inactivation. IDH1-R132H is a gain-of-function mutation that converts α-ketoglutarate into 2-hydroxyglutarate (D-2HG). The role of D-2HG within the tumor microenvironment of mIDH1/mATRX/mTP53 gliomas remains unexplored. Inhibition of 2HG, when used as monotherapy or in combination with radiation and temozolomide (IR/TMZ), led to increased median survival (MS) of mIDH1 glioma bearing mice. Also, 2HG inhibition elicited anti-mIDH1 glioma immunological memory. In response to 2HG inhibition, PD-L1 expression levels on mIDH1-glioma cells increased to similar levels as observed in wild-type-IDH1 gliomas. Thus, we combined 2HG inhibition/IR/TMZ with anti-PDL1 immune checkpoint-blockade and observed complete tumor regression in 60% of mIDH1 glioma bearing mice. This combination strategy reduced T-cell exhaustion and favored the generation of memory CD8+T-cells. Our findings demonstrate that metabolic reprogramming elicits anti-mIDH1 glioma immunity, leading to increased MS and immunological memory. Our preclinical data supports the testing of IDH-R132H inhibitors in combination with IR/TMZ and anti-PDL1 as targeted therapy for mIDH1/mATRX/mTP53 glioma patients.Brief SummaryInhibition of 2-Hydroxyglutrate in mutant-IDH1 glioma in the genetic context of ATRX and TP53 inactivation elicits metabolic-reprograming and anti-glioma immunity.


2015 ◽  
Vol 122 (2) ◽  
pp. 324-330 ◽  
Author(s):  
Ichiro Nakano

Tumor heterogeneity of adult high-grade glioma (HGG) is recognized in 3 major subtypes based on core gene signatures. However, the molecular signatures and clinical implications of glioma stem cells (GSCs) in individual HGG subtypes remain poorly characterized. Recently genome-wide transcriptional analysis identified two mutually exclusive GSC subtypes with distinct dysregulated signaling and metabolic pathways. Analysis of genetic profiles and phenotypic assays distinguished proneural (PN) from mesenchymal (MES) GSCs and revealed a striking correlation with the corresponding PN or MES HGGs. Similar to HGGs with a MES signature, MES GSCs display more aggressive phenotypes both in vitro and in vivo. Furthermore, MES GSCs are markedly resistant to radiation as compared with PN GSCs, consistent with the relative radiation resistance of MES GBM compared with other subtypes. A systems biology approach has identified a set of transcription factors as the master regulators for the MES signature. Metabolic reprogramming in MES GSCs has also been noticed with the prominent activation of the glycolytic pathway, comprising aldehyde dehydrogenase (ALDH) family genes. This review summarizes recent progress in the characterization of the molecular signature in distinct HGG and GSC subtypes and plasticity between different GSC subtypes as well as between GSCs and non-GSCs in HGG tumors. Clinical implications of the translational GSC research are also discussed.


2019 ◽  
Vol 316 (3) ◽  
pp. F517-F529 ◽  
Author(s):  
Edward R. Smith ◽  
Belinda Wigg ◽  
Stephen G. Holt ◽  
Timothy D. Hewitson

Histone acetylation is an important modulator of gene expression in fibrosis. This study examined the effect of the pre-eminent fibrogenic cytokine transforming growth factor-β1 (TGF-β1) on histone 3 (H3) acetylation and its regulatory kinetics in renal myofibroblasts. Fibroblasts propagated from rat kidneys after ureteric obstruction were treated with recombinant TGF-β1 or vehicle for 48 h. TGF-β1-induced myofibroblast activation was accompanied by a net decrease in total H3 acetylation, although changes in individual marks were variable. This was paralleled by a generalized reduction in histone acetyltransferases (HAT) and divergent changes in histone deacetylase (HDAC) enzymes at both transcript and protein levels. Globally, this was manifest in a reduction in total HAT activity and increase in HDAC activity. TGF-β1 induced a shift in cellular metabolism from oxidative respiration to aerobic glycolysis, resulting in reduced acetyl-CoA. The reduction in total H3 acetylation could be rescued by providing exogenous citrate or alternative sources of acetyl-CoA without ameliorating changes in HAT/HDAC activity. In conclusion, TGF-β1 produces a metabolic reprogramming in renal fibroblasts, with less H3 acetylation through reduced acetylation, increased deacetylation, and changes in carbon availability. Our results suggest that acetyl-CoA availability predominates over HAT and HDAC activity as a key determinant of H3 acetylation in response to TGF-β1.


2019 ◽  
Vol 20 (10) ◽  
pp. 2372 ◽  
Author(s):  
Mette L. Johansen ◽  
Jason Vincent ◽  
Haley Gittleman ◽  
Sonya E. L. Craig ◽  
Marta Couce ◽  
...  

An integrated approach has been adopted by the World Health Organization (WHO) for diagnosing brain tumors. This approach relies on the molecular characterization of biopsied tissue in conjunction with standard histology. Diffuse gliomas (grade II to grade IV malignant brain tumors) have a wide range in overall survival, from months for the worst cases of glioblastoma (GBM) to years for lower grade astrocytic and oligodendroglial tumors. We previously identified a change in the cell adhesion molecule PTPmu in brain tumors that results in the generation of proteolytic fragments. We developed agents to detect this cell surface-associated biomarker of the tumor microenvironment. In the current study, we evaluated the PTPmu biomarker in tissue microarrays and individual tumor samples of adolescent and young adult (n = 25) and adult (n = 69) glioma populations using a fluorescent histochemical reagent, SBK4-TR, that recognizes the PTPmu biomarker. We correlated staining with clinical data and found that high levels of the PTPmu biomarker correlate with increased survival of glioma patients, including those with GBM. Patients with high PTPmu live for 48 months on average, whereas PTPmu low patients live only 22 months. PTPmu high staining indicates a doubling of patient survival. Use of the agent to detect the PTPmu biomarker would allow differentiation of glioma patients with distinct survival outcomes and would complement current molecular approaches used in glioma prognosis.


2020 ◽  
Vol 13 (10) ◽  
pp. 292
Author(s):  
Barbara Guerra ◽  
Olaf-Georg Issinger

Uncontrolled proliferation is a feature defining cancer and it is linked to the ability of cancer cells to effectively adapt their metabolic needs in response to a harsh tumor environment. Metabolic reprogramming is considered a hallmark of cancer and includes increased glucose uptake and processing, and increased glutamine utilization, but also the deregulation of lipid and cholesterol-associated signal transduction, as highlighted in recent years. In the first part of the review, we will (i) provide an overview of the major types of lipids found in eukaryotic cells and their importance as mediators of intracellular signaling pathways (ii) analyze the main metabolic changes occurring in cancer development and the role of oncogenic signaling in supporting aberrant lipid metabolism and (iii) discuss combination strategies as powerful new approaches to cancer treatment. The second part of the review will address the emerging role of CK2, a conserved serine/threonine protein kinase, in lipid homeostasis with an emphasis regarding its function in lipogenesis and adipogenesis. Evidence will be provided that CK2 regulates these processes at multiple levels. This suggests that its pharmacological inhibition combined with dietary restrictions and/or inhibitors of metabolic targets could represent an effective way to undermine the dependency of cancer cells on lipids to interfere with tumor progression.


Sign in / Sign up

Export Citation Format

Share Document