fructose 2
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Ziyan NanGong ◽  
Tianhui Li ◽  
Weikang Zhang ◽  
Ping Song ◽  
Qinying Wang

Abstract Background Entomopathogenic nematodes (EPNs) have long been used for controlling soil-dwelling insects. Steinernema carpocapsae HB310, previously showed a high virulence against many pests including Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae). Due to the lack of durable formulations, up until now, S. carpocapsae HB310 has thus far been prevented from use in large-scale farming. The present study aimed to get a better EPNs capsule formulation suitable for long-term storage and effective application. Results An improved EPNs capsule formulation, herein named: Capsule-C was prepared by the following composition: Solution I: 18% glycerol, 0.075% formaldehyde, 1% sodium alginate, 0.2% xanthan gum, 0.5% potassium sorbate, 9% glucose, 2% fructose, 2% sucrose, and the remainder was distilled water. The nematodes suspension was added to the alginate mixture in 2 × 104 IJs/mL; Solution II: 18% glycerol, 0.075% formaldehyde, 0.5% calcium chloride, 0.5% potassium sorbate, with the remainder being distilled water. After storage for 180 days at 16 °C and 100% RH, the survival rate of nematodes in Capsule-C was 75.68 ± 0.48% and the nematodes caused 82.33 ± 1.45% mortality in the 5th instar larvae of Galleria mellonella. A. ipsilon larvae preferred to chew and ingest Capsule-C due to the addition of the glucose compound. The feeding rate of A. ipsilon larvae on Capsule-C reached to 100% within 24 h and the larval mortality of A. ipsilon was 90.48 ± 6.35%. Conclusion EPNs-containing capsules were as effective as sprayed EPNs in water solution at killing A. ipsilon. These results will provide ideas to acquire a stable and efficient EPNs capsule formulation and further promote the application of environmental friendly biological pesticides.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2913
Author(s):  
Reinier Alvarez ◽  
Debjani Mandal ◽  
Prashant Chittiboina

PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2, 6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.


2021 ◽  
Vol 22 (7) ◽  
pp. 3780
Author(s):  
Klaudia Gustaw ◽  
Piotr Koper ◽  
Magdalena Polak-Berecka ◽  
Kamila Rachwał ◽  
Katarzyna Skrzypczak ◽  
...  

The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, 79 code for RNA, and 93 are pseudogenes. L. hilgardii FLUB possesses three clustered regularly interspaced short palindromic repeats (CRISPR), eight genomic islands (44,155 bp to 6345 bp), and three (two intact and one incomplete) prophage regions. For the first time, the characteristics of the genome of this species were described and a pangenomic analysis was performed. The concept of the pangenome was used not only to establish the genetic repertoire of this species, but primarily to highlight the unique characteristics of L. hilgardii FLUB. The core of the genome of L. hilgardii is centered around genes related to the storage and processing of genetic information, as well as to carbohydrate and amino acid metabolism. Strains with such a genetic constitution can effectively adapt to environmental changes. L. hilgardii FLUB is distinguished by an extensive cluster of metabolic genes, arsenic detoxification genes, and unique surface layer proteins. Variants of MRS broth with ethanol (10–20%), glucose (2–25%), and fructose (2–24%) were prepared to test the strain’s growth preferences using Bioscreen C and the PYTHON script. L. hilgardii FLUB was found to be more resistant than a reference strain to high concentrations of alcohol (18%) and sugars (25%). It exhibited greater preference for fructose than glucose, which suggests it has a fructophilic nature. Comparative genomic analysis supported by experimental research imitating the conditions of alcoholic beverages confirmed the niche specialization of L. hilgardii FLUB to the mead environment.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miao Liu ◽  
Nan Li ◽  
Chun Qu ◽  
Yilin Gao ◽  
Lijie Wu ◽  
...  

AbstractHyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.


2020 ◽  
Vol 12 (555) ◽  
pp. eaay1371 ◽  
Author(s):  
Zhiping Liu ◽  
Jiean Xu ◽  
Qian Ma ◽  
Xiaoyu Zhang ◽  
Qiuhua Yang ◽  
...  

The coordination of metabolic signals among different cellular components in pathological retinal angiogenesis is poorly understood. Here, we showed that in the pathological angiogenic vascular niche, retinal myeloid cells, particularly macrophages/microglia that are spatially adjacent to endothelial cells (ECs), are highly glycolytic. We refer to these macrophages/microglia that exhibit a unique angiogenic phenotype with increased expression of both M1 and M2 markers and enhanced production of both proinflammatory and proangiogenic cytokines as pathological retinal angiogenesis–associated glycolytic macrophages/microglia (PRAGMs). The phenotype of PRAGMs was recapitulated in bone marrow–derived macrophages or retinal microglia stimulated by lactate that was produced by hypoxic retinal ECs. Knockout of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3; Pfkfb3 for rodents), a glycolytic activator in myeloid cells, impaired the ability of macrophages/microglia to acquire an angiogenic phenotype, rendering them unable to promote EC proliferation and sprouting and pathological neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Mechanistically, hyperglycolytic macrophages/microglia produced large amount of acetyl–coenzyme A, leading to histone acetylation and PRAGM-related gene induction, thus reprogramming macrophages/microglia into an angiogenic phenotype. These findings reveal a critical role of glycolytic metabolites as initiators of reciprocal activation of macrophages/microglia and ECs in the retinal angiogenic niche and suggest that strategies targeting the metabolic communication between these cell types may be efficacious in the treatment of pathological retinal angiogenesis.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1149
Author(s):  
Santiago Domínguez-Coello ◽  
Lourdes Carrillo-Fernández ◽  
Jesús Gobierno-Hernández ◽  
Manuel Méndez-Abad ◽  
Carlos Borges-Álamo ◽  
...  

The relationship between fructose intake and insulin resistance remains controversial. Our purpose was to determine whether a reduction in dietary fructose is effective in decreasing insulin resistance (HOMA2-IR). This field trial was conducted on 438 adults with overweight and obese status, without diabetes. A total of 121 patients in a low fructose diet (LFD) group and 118 in a standard diet (SD) group completed the 24-week study. Both diets were prescribed with 30–40% of energy intake restriction. There were no between-group differences in HOMA2-IR. However, larger decreases were seen in the LFD group in waist circumference (−7.0 vs. −4.8 = −2.2 cms, 95% CI: −3.7, −0.7) and fasting blood glucose −0.25 vs. −0.11 = −0.14 mmol/L, 95% CI: −0.028, −0.02). The percentage of reduction in calorie intake was similar. Only were differences observed in the % energy intake for some nutrients: total fructose (−2 vs. −0.6 = −1.4, 95% CI: −2.6, −0.3), MUFA (−1.7 vs. −0.4 = −1.3, 95% CI: −2.4, −0.2), protein (5.1 vs. 3.6 = 1.4, 95% CI: 0.1, 2.7). The decrease in fructose consumption originated mainly from the reduction in added fructose (−2.8 vs. −1.9 = −0.9, 95% CI: −1.6, −0.03). These results were corroborated after multivariate adjustments. The low fructose diet did not reduce insulin resistance. However, it reduced waist circumference and fasting blood glucose concentration, which suggests a decrease in hepatic insulin resistance.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Liang Kong ◽  
Zehua Wang ◽  
Xiaohong Liang ◽  
Yue Wang ◽  
Lifen Gao ◽  
...  

Abstract Background Microglia, the resident macrophages of central nervous system, have been initially categorized into two opposite phenotypes: classical activation related to pro-inflammatory responses and alternative activation corresponding with anti-inflammatory reactions and tissue remodeling. The correlation between metabolic pattern and microglial activation has been identified. However, little is known about the mechanism of metabolism-mediated microglia polarization and pro-inflammatory effect. Methods Metabolic alteration was analyzed in different phenotypes of microglia in vitro. LPS-induced neuroinflammation and sickness behavior mouse model was used to investigate the effect of lactate on classical microglial activation in vivo. Results Glycolysis-related regulators, monocarboxylate transporter 1 (MCT1), MCT4, and pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), were specifically increased in LPS-stimulated primary microglia and microglia cell line BV2. Knockdown of MCT1 suppressed glycolysis rate and decreased LPS-induced expression of iNOS, interleukin-1β (IL-1β), IL-6, and phosphorylation of STAT1 in BV2 cells. Importantly, MCT1 promoted PFKFB3 expression via hypoxia-inducible factor-1α (Hif-1α), and overexpression of PFKFB3 restored the classical activation of BV2 cells suppressed by MCT1 silence. All above strongly suggested that MCT1/PFKFB3 might accelerate LPS-induced classical polarization of microglia probably by promoting glycolysis. Interestingly, additional administration of moderate lactate, which may block the transport function of MCT1, decreased LPS-induced classical activation and expression of PFKFB3 in BV2 cells. Intracerebroventricular injection of lactate ameliorated LPS-induced sickness behavior and classical polarization of microglia in mice. Conclusions Our results demonstrate the key role of MCT1 in microglial classical activation and neuroinflammation in pathological conditions. In addition, lactate administration may be a potential therapy to suppress neuroinflammation by altering microglial polarization.


2019 ◽  
Vol 116 (27) ◽  
pp. 13394-13403 ◽  
Author(s):  
Yapeng Cao ◽  
Xiaoyu Zhang ◽  
Lina Wang ◽  
Qiuhua Yang ◽  
Qian Ma ◽  
...  

Increased glycolysis in the lung vasculature has been connected to the development of pulmonary hypertension (PH). We therefore investigated whether glycolytic regulator 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3)-mediated endothelial glycolysis plays a critical role in the development of PH. Heterozygous global deficiency of Pfkfb3 protected mice from developing hypoxia-induced PH, and administration of the PFKFB3 inhibitor 3PO almost completely prevented PH in rats treated with Sugen 5416/hypoxia, indicating a causative role of PFKFB3 in the development of PH. Immunostaining of lung sections and Western blot with isolated lung endothelial cells showed a dramatic increase in PFKFB3 expression and activity in pulmonary endothelial cells of rodents and humans with PH. We generated mice that were constitutively or inducibly deficient in endothelial Pfkfb3 and found that these mice were incapable of developing PH or showed slowed PH progression. Compared with control mice, endothelial Pfkfb3-knockout mice exhibited less severity of vascular smooth muscle cell proliferation, endothelial inflammation, and leukocyte recruitment in the lungs. In the absence of PFKFB3, lung endothelial cells from rodents and humans with PH produced lower levels of growth factors (such as PDGFB and FGF2) and proinflammatory factors (such as CXCL12 and IL1β). This is mechanistically linked to decreased levels of HIF2A in lung ECs following PFKFB3 knockdown. Taken together, these results suggest that targeting PFKFB3 is a promising strategy for the treatment of PH.


Sign in / Sign up

Export Citation Format

Share Document